题目:
给你一个按升序排序的整数数组 num(可能包含重复数字),请你将它们分割成一个或多个子序列,其中每个子序列都由连续整数组成且长度至少为 3 。
如果可以完成上述分割,则返回 true ;否则,返回 false 。
示例 1:
输入: [1,2,3,3,4,5]
输出: True
解释:
你可以分割出这样两个连续子序列 :
1, 2, 3
3, 4, 5
示例 2:
输入: [1,2,3,3,4,4,5,5]
输出: True
解释:
你可以分割出这样两个连续子序列 :
1, 2, 3, 4, 5
3, 4, 5
示例 3:
输入: [1,2,3,4,4,5]
输出: False
思路&&方法:贪心
对于数组中的元素 x,如果存在一个子序列以 x−1 结尾,则可以将 x 加入该子序列中。将 x 加入已有的子序列总是比新建一个只包含 x 的子序列更优,因为前者可以将一个已有的子序列的长度增加 1,而后者新建一个长度为 1 的子序列,而题目要求分割成的子序列的长度都不小于 3,因此应该尽量避免新建短的子序列。
基于此,可以通过贪心的方法判断是否可以完成分割。
使用两个哈希表,第一个哈希表存储数组中的每个数字的剩余次数,第二个哈希表存储数组中的每个数字作为结尾的子序列的数量。
初始时,每个数字的剩余次数即为每个数字在数组中出现的次数,因此遍历数组,初始化第一个哈希表。
在初始化第一个哈希表之后,遍历数组,更新两个哈希表。只有当一个数字的剩余次数大于 0 时,才需要考虑这个数字是否属于某个子序列。假设当前元素是 x,进行如下操作。
首先判断是否存在以 x-1 结尾的子序列,即根据第二个哈希表判断 x-1 作为结尾的子序列的数量是否大于 0,如果大于 0,则将元素 x 加入该子序列中。由于 x 被使用了一次,因此需要在第一个哈希表中将 x 的剩余次数减 1。又由于该子序列的最后一个数字从 x-1 变成了 x,因此需要在第二个哈希表中将 x-1 作为结尾的子序列的数量减 1,以及将 x 作为结尾的子序列的数量加 1。
否则,x为一个子序列的第一个数,为了得到长度至少为 3的子序列,x+1 和 x+2 必须在子序列中,因此需要判断在第一个哈希表中 x+1 和 x+2 的剩余次数是否都大于 0。
当 x+1 和 x+2 的剩余次数都大于 0 时,可以新建一个长度为 3 的子序列 [x,x+1,x+2]。由于这三个数都被使用了一次,因此需要在第一个哈希表中将这三个数的剩余次数分别减 1。又由于该子序列的最后一个数字是 x+2,因此需要在第二个哈希表中将 x+2 作为结尾的子序列的数量加 1。
否则,无法得到长度为 3 的子序列 [x,x+1,x+2],因此无法完成分割,返回false。
如果整个数组遍历结束时,没有遇到无法完成分割的情况,则可以完成分割,返回 true。
class Solution {
public:
bool isPossible(vector<int>& nums) {
unordered_map<int,int>countMap;
unordered_map<int,int>endMap;
for(auto& x:nums){
countMap[x]++;
}
for(auto& x:nums){
if(countMap[x]>0){
if(endMap[x-1]>0){
endMap[x-1]--;
endMap[x]++;
countMap[x]--;
}
else{
if(countMap[x+1]>0&&countMap[x+2]>0){
countMap[x]--;
countMap[x+1]--;
countMap[x+2]--;
endMap[x+2]++;
}
else {
return false;
}
}
}
}
return true;
}
};