本博文资料来源于算法导论第三版
动态规划有两种等价实现方法:带备忘的自顶向下发(topDownWithMemoization),自底向上方法,付出额外的内存空间来节省计算时间,是典型的时空权衡,递归时会保存每个子问题的解
长度n与对应价格p关系
1~10的对应最优收益
朴素递归之自顶向下方法伪代码
c++代码
#include <iostream>
using namespace std;
upDownCutRod(int p[],int n)
{
if(n==0)
return 0;
int q=-1;
for(int i=0;i<n;++i)
q=max(q,p[i]+upDownCutRod(p,n-i-1));
return q;
}
int main()
{
int p[10]={1,5,8,9,10,17,17,20,24,30};
int q=upDownCutRod(p,10);
cout<<"最优收益值为:"<<q;
return 0;
}
运行结果
动态规划自顶向下伪代码
c++代码实现
#include <iostream>
using namespace std;
int memorizedCutRodAux(int p[],int n,int r[])
{
int q;//最大收益值
if(r[n]>=0)
return r[n];//检查所需值是否已知
if(n==0)
q=0;//n=0时不会有收益
else
{
q=-1;
for(int i=0;i<n;++i)
q=max(q,p[i]+memorizedCutRodAux(p,n-i-1,r));
}
r[n]=q;
return q;
}
memorizedCutRod(int p[],int n)
{
int r[n+1];
for(int i=0;i<=n;++i)
r[i]=-1;
return memorizedCutRodAux(p,n,r);
}
int main()
{
int p[10]={1,5,8,9,10,17,17,20,24,30};
int q=memorizedCutRod(p,10);
cout<<"带备忘的自顶向下方法的最优收益值为:"<<q;
return 0;
}
运行结果
自底向上方法伪代码
c++代码实现
#include <iostream>
using namespace std;
int bottomUpCutRod(int p[],int n)
{
int r[n+1];//记录不同规模子问题的解,这里是1~10
int q;//记录收益
r[0]=0;
for(int j=1;j<=n;++j)
{
q=-1;//初始为负,常见的表示未知数的方法
for(int i=1;i<=j;++i)
{
q=max(q,p[i-1]+r[j-i]);//不再使用递归
}
r[j]=q;
}
return r[n];
}
int main()
{
int p[10]={1,5,8,9,10,17,17,20,24,30};
int q=bottomUpCutRod(p,10);
cout<<"自底向上方法的最优收益值为:"<<q;
return 0;
}
运行结果