辗转相除法求最大公约数递归与非递归代码c++

本文深入探讨了最大公约数(GCD)算法的不同实现方式,包括非递归和四种递归方法,通过代码示例详细解释了每种算法的工作原理。文章提供了完整的可运行代码,便于读者理解和实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 非递归
int gcd(int n, int m){
	if(n<m) swap(n,m);
	while(m>0){
		int t = n%m;
		n = m;
		m = t;
	}
	return n;
}
  1. 递归1
int gcd(int n, int m){
	if(n>=m){
		if(m==0) return n;
		int t = n%m;
		n = m;
		m = t;
		gcd(n,m);
	}else{
		return gcd(m,n);
	}
}
  1. 递归2
int gcd(int n, int m){
	if(n>=m){
		if(m==0) return n;
		else gcd(m, n%m);
	}else{
		return gcd(m,n);
	}
}
  1. 递归3
int gcd(int n, int m){
	if(m==0) return n;
	else return gcd(m,n%m);
}
  1. 递归4
int gcd(int n, int m){
	return m ? gcd(m, n%m) : n;
}

可运行版本:

#include <stdio.h>
int gcd(int n, int m){
	return m ? gcd(m, n%m) : n;
}

int main() {
 int a, b;
 while (~scanf("%d%d", &a, &b)) {
 	printf("%d\n", gcd(a, b));
 }
 return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值