- 博客(92)
- 资源 (9)
- 问答 (3)
- 收藏
- 关注
原创 【Python大作业】PyQt5实战之音频播放器
这是一个基于 PyQt5 的音频播放器项目,采用了 MVC 框架。该项目在 Ubuntu 20.04 下进行开发,可指定播放特定文件夹下的歌曲及顺序播放、单曲循环、随机播放等基本功能。此外,还实现了倍速播放功能。
2023-12-27 01:22:50
1338
原创 关于生成式人工智能模型应用的调研
生成式人工智能(Generative AI)近年来经历了显著的增长,导致在各种领域出现了广泛的应用。在本文中,我们提供了对350多个生成式人工智能应用的综合调查,提供了结构化的分类法和对各种单模和多模生成式人工智能的简明描述。这项调查分为各个部分,涵盖了各种单模生成式人工智能应用,如文本、图像、视频、游戏和脑信息等。我们的调查旨在为研究人员和从业者提供宝贵的资源,以帮助他们在迅速扩展的生成式人工智能领域中导航,促进对当前最先进技术的更好理解,推动领域的进一步创新。
2023-10-27 23:43:06
1242
原创 【计算机视觉|人脸建模】学习从图像中回归3D面部形状和表情而无需3D监督
从单张图像估计3D面部形状必须对光照、头部姿势、表情、面部毛发、化妆和遮挡等变化具有鲁棒性。鲁棒性要求具备大规模的野外图像训练集,而这些图像在构建时缺乏真实的3D形状信息。为了在没有任何2D到3D监督的情况下训练网络,我们提出了RingNet,它能够从单张图像中学习计算3D面部形状。我们的关键观察是,一个人的面部形状在不同图像中是恒定的,不受表情、姿势、光照等影响。RingNet利用一个人的多张图像和自动检测的2D面部特征。它使用一种新颖的损失函数,鼓励当身份相同时,面部形状相似,而对于不同的人则不同。
2023-10-07 16:25:47
2203
原创 【计算机视觉|人脸建模】学习从4D扫描中获取的面部形状和表情的模型
本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处图1.。顶部:D3DFACS数据集的样本。中部:仅模型注册。底部:仅使用模型进行表情转移到Beeler等人[2011]的主题。3D面部建模领域存在着高端和低端方法之间的巨大差距。在高端,最佳的面部动画与真实人类无法区分,但这需要大量手工劳动。在低端,来自消费者深度传感器的面部捕捉依赖于不足以捕捉自然面部形状和表情变化的3D面部模型。我们寻求通过从数千个准确对齐的3D扫描中学习面部模型来找到一个中间地带。
2023-10-05 15:34:49
2375
原创 【计算机视觉|人脸建模】PanoHead:360度几何感知的3D全头合成
最近,在计算机视觉和计算机图形领域,对3D人头的合成和重建引起了越来越多的关注。现有的最先进的3D生成对抗网络(GANs)用于3D人头合成的模型要么仅限于近前视图,要么难以在大视角下保持3D一致性。我们提出了PanoHead,这是第一个3D感知的生成模型,通过仅使用野外非结构化图像进行训练,能够以360度高质量、一致的视图合成全头图像,具有多样的外观和详细的几何结构。在其核心,我们提升了最近3D GANs的表示能力,并在从野外图像中训练时弥合数据对齐差距,这些图像具有广泛分布的视角。
2023-09-28 10:38:16
2671
原创 【计算机视觉|生成对抗】用于高保真自然图像合成的大规模GAN训练用于高保真自然图像合成的大规模GAN训练(BigGAN)
尽管在生成图像建模方面取得了近期的进展,但成功地从诸如ImageNet之类的复杂数据集中生成高分辨率且多样化的样本仍然是一个难以捉摸的目标。为了实现这一目标,我们尝试以迄今为止最大的规模训练生成对抗网络,并研究了与这种规模特定的不稳定性。我们发现,向生成器应用正交正则化使其适应一个简单的“截断技巧”,通过减少生成器输入的方差,从而在样本保真度和多样性之间实现精细的控制。我们的修改导致了在类条件图像合成方面刷新了最新技术水平的模型。
2023-08-24 17:35:45
1139
1
原创 【计算机视觉|生成对抗】StackGAN:使用堆叠生成对抗网络进行文本到照片逼真图像合成
从文本描述合成高质量图像是计算机视觉中的一个具有挑战性的问题,具有许多实际应用。现有的文本到图像方法生成的样本大致能够反映出给定描述的意思,但它们缺乏必要的细节和生动的物体部分。在本文中,我们提出了堆叠生成对抗网络(StackGAN)来生成基于文本描述的 256×256 照片逼真图像。我们通过一个素描精化过程将这个难题分解为更易管理的子问题。第一阶段生成对抗网络(Stage-I GAN)根据给定的文本描述勾勒出物体的原始形状和颜色,生成第一阶段的低分辨率图像。
2023-08-19 17:33:01
1441
原创 【计算机视觉|生成对抗】逐步增长的生成对抗网络(GAN)以提升质量、稳定性和变化
我们描述了一种新的生成对抗网络(GANs)训练方法。关键思想是逐步地使生成器和判别器增长:从低分辨率开始,随着训练的进行,我们添加新的层(layer),这些层模拟了越来越精细的细节。这不仅加速了训练过程,还极大地稳定了训练过程,使我们能够生成前所未有质量的图像,例如102421024^210242分辨率的CELEBA图像。我们还提出了一种简单的方法来增加生成图像的变化,并在无监督的CIFAR10数据集中实现了创纪录的8.808.808.80的Inception分数。
2023-08-18 17:28:08
1874
原创 【计算机视觉|生成对抗】非配对图像到图像的翻译:使用循环一致对抗网络(CycleGAN)
图像到图像的转换是一类涉及视觉和图形问题的任务,其目标是通过一组配准的图像对训练集来学习将输入图像映射到输出图像。然而,在许多任务中,很难获得配对的训练数据。我们提出了一种方法,用于在没有配对样本的情况下学习从源领域XXX到目标领域YYY的图像转换。我们的目标是学习一个映射GX→YGX→Y,使得从GXG(X)GX产生的图像分布在使用对抗性损失时与领域 Y 的分布不可区分。由于这种映射存在很大的不确定性,因此我们引入了一个逆映射FY→XFY→X。
2023-08-17 17:23:40
1407
原创 【计算机视觉|生成对抗】带条件的对抗网络进行图像到图像的转换(pix2pix)
我们研究了将条件对抗网络作为通用解决方案,用于图像到图像的转换问题。这些网络不仅学习从输入图像到输出图像的映射,还学习了一个损失函数来训练这种映射。这使得可以将相同的通用方法应用于传统上需要非常不同损失公式的问题。我们证明了这种方法在从标签映射合成照片、从边缘映射重建物体和给图像上色等任务中是有效的。此外,自从与本论文相关联的pix2pix软件发布以来,已经有数百名Twitter用户发布了使用我们的系统进行艺术实验的作品。
2023-08-14 20:25:13
1649
原创 【计算机视觉|生成对抗】改进的生成对抗网络(GANs)训练技术
本文介绍了一系列应用于生成对抗网络(GANs)框架的新的架构特性和训练过程。我们专注于GAN的两个应用领域:半监督学习以及生成人类视觉上逼真的图像。与大多数有关生成模型的研究不同,我们的主要目标不是训练一个将测试数据分配高概率的模型,我们也不要求模型在不使用任何标签的情况下能够学习得很好。通过我们的新技术,我们在MNIST、CIFAR-10和SVHN的半监督分类任务中取得了最先进的结果。
2023-08-14 10:50:37
1706
原创 【计算机视觉|生成对抗】用深度卷积生成对抗网络进行无监督表示学习(DCGAN)
近年来,卷积网络(CNNs)的监督学习在计算机视觉应用中得到了广泛的应用。相比之下,CNNs的无监督学习受到的关注较少。在这项工作中,我们希望弥补CNNs在监督学习和无监督学习之间的差距。我们引入了一类称为深度卷积生成对抗网络(DCGANs)的CNNs,它们具有某些架构约束,并证明它们是无监督学习的有力候选者。在各种图像数据集上的训练中,我们展示了有说服力的证据,证明我们的深度卷积对抗对从对象部分到场景在生成器和鉴别器中都学到了表示的层次结构。
2023-08-12 16:29:00
2189
原创 【计算机视觉|生成对抗】条件生成对抗网络(CGAN)
生成对抗网络(Generative Adversarial Nets)[8] 最近被引入为训练生成模型的一种新颖方法。在这项工作中,我们介绍了生成对抗网络的条件版本,通过简单地将我们希望依赖的数据yyy同时提供给生成器和判别器,就可以构建它。我们展示了这个模型可以生成依据类标签条件化的MNIST数字。我们还说明了如何使用这个模型学习一个多模态模型(multi-modal model),并提供了一个初步的图像标记应用示例,在其中我们展示了如何使用这种方法生成并不是训练标签部分的描述性标签。
2023-08-11 14:48:22
2115
原创 【计算机视觉|生成对抗】生成对抗网络(GAN)
我们提出了一个通过**对抗(adversarial)**过程估计生成模型的新框架,在其中我们同时训练两个模型:一个生成模型G,捕获数据分布一个判别模型D,估计样本来自训练数据还是G的概率。G的训练过程是最大化D犯错误的概率。该框架对应于一个极小极大的两人博弈。在任意函数G和D的空间中,存在一个唯一解决方案,G恢复训练数据分布,D在任何地方都等于1/2。在G和D由多层感知机定义的情况下,可以通过反向传播训练整个系统。在训练或生成样本期间,不需要任何马尔可夫链或展开的近似推理网络。
2023-08-09 22:51:12
1059
原创 【计算机视觉|风格迁移】PP-GAN:使用GAN的地标提取器将韩国人像的风格转化为身份证照片
风格转换的目标是在保持图像内容的同时,转移另一图像的风格。然而,传统的风格转换研究在保持面部标志,如眼睛、鼻子和嘴巴,这些对保持图像身份至关重要的特征时存在重大局限性。在韩国肖像中,大多数人都戴着"蓬帽(Gat)",这是一种仅由男性佩戴的头饰。由于其与身份证照片中的头发有着明显的特征差异,转移"Gat"是具有挑战性的。为解决这个问题,本研究提出了一种保持面部身份的同时保留"Gat"的风格转移深度学习网络。与现有的风格转移方法不同,该方法旨在保留风格图像上的纹理、服装和"Gat"。
2023-08-07 19:05:36
1472
1
原创 【计算机视觉|语音分离】期望在嘈杂环境中聆听:一个用于语音分离的不依赖于讲话者的“音频-视觉模型”
我们提出了一个联合的“音频-视觉模型”(joint audio-visual model),用于从混合声音(如其他讲话者和背景噪音)中分离出单一的语音信号。仅使用音频作为输入来解决这个任务极其具有挑战性,并且不能将分离出的语音信号与视频中的讲话者关联起来。在这篇论文中,我们提出了一个基于深度网络的模型,它结合了视觉和听觉信号(incorporates both visual and auditory signals)来解决这个任务。
2023-08-02 22:33:46
3153
1
原创 【计算机视觉|人脸建模】SOFA:基于风格、由单一示例的2D关键点驱动的3D面部动画
我们提出了一个基于2D关键点驱动的3D面部动画框架(2D landmark-driven 3D facial animation framework),无需使用3D面部数据集进行训练。我们的方法将3D面部头像分解为几何(geometry)和纹理(texture)部分。在给定2D关键点作为输入的情况下,我们的模型学习估计FLAME的参数,并将目标纹理转换为不同的面部表情。实验结果表明,我们的方法取得了显著的成果。通过使用2D关键点作为输入数据,我们的方法有潜力在获取完整RGB面部图像有困难。
2023-07-31 22:26:40
1003
原创 【计算机视觉|人脸建模】深度学习时代的3D人脸重建调查报告
随着深度学习的出现和图形处理单元的广泛应用,3D人脸重建已成为生物特征识别最引人入胜的主题。本文探讨了3D人脸重建技术的各个方面。文中讨论了五种技术,分别是deep learning(DL,深度学习)epipolar geometry(EG,极线几何,对极几何)one-shot learning(OSL,单次学习,单样本学习)3D morphable model(3DMM,3D可变形模型)shape from shading methods(SFS,基于阴影形状的重建,由灰度恢复深度)
2023-07-30 20:50:50
3113
原创 【计算机视觉|人脸识别】 facenet-pytorch 项目中文说明文档
为了方便中文开发者研究学习人脸识别相关任务、贡献代码,我将本项目的README文件以及位于 `examples` 里面的几个示例脚本中必要的部分翻译成了中文,以供参考。
2023-07-20 20:41:00
4381
1
原创 《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》课后习题答案(带解析)(八)
声明:此系列答案配套《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》一书相关内容。,仅作参考学习交流之用,转载请注明出处。如发现错误,请联系博主及时勘误。如有侵权行为,博主将立即下架全部内容。...
2023-02-23 01:39:41
1683
原创 《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》课后习题答案(带解析)(七)
声明:此系列答案配套《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》一书相关内容。,仅作参考学习交流之用,转载请注明出处。如发现错误,请联系博主及时勘误。如有侵权行为,博主将立即下架全部内容。...
2023-02-23 01:36:37
1674
4
原创 《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》课后习题答案(带解析)(六)
声明:此系列答案配套《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》一书相关内容。,仅作参考学习交流之用,转载请注明出处。如发现错误,请联系博主及时勘误。如有侵权行为,博主将立即下架全部内容。...
2023-02-23 01:35:33
1709
6
原创 《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》课后习题答案(带解析)(五)
声明:此系列答案配套《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》一书相关内容。,仅作参考学习交流之用,转载请注明出处。如发现错误,请联系博主及时勘误。如有侵权行为,博主将立即下架全部内容。...
2023-02-23 01:34:01
1567
原创 《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》课后习题答案(带解析)(四)
声明:此系列答案配套《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》一书相关内容。,仅作参考学习交流之用,转载请注明出处。如发现错误,请联系博主及时勘误。如有侵权行为,博主将立即下架全部内容。...
2023-02-23 01:29:26
2871
21
原创 《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》课后习题答案(带解析)(二)
声明:此系列答案配套《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》一书相关内容。,仅作参考学习交流之用,转载请注明出处。如发现错误,请联系博主及时勘误。如有侵权行为,博主将立即下架全部内容。...
2023-02-23 01:21:53
2530
20
原创 《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》课后习题答案(带解析)(一)
声明:此系列答案配套《计算机组成与系统结构(第二版) 裘雪红 李伯成 西安电子科技大学出版社》一书相关内容。所有内容为**博主个人编辑**,仅作参考学习交流之用,转载请注明出处。如发现错误,请联系博主及时勘误。如有侵权行为,博主将立即下架全部内容。.........
2023-02-23 00:59:17
4171
2
原创 【行业大数据分析技术】大作业:Docker中复现项目代码
这是课程期末大作业的使用说明,请先跳至文末,有一段免责声明。课程作业要求:请在本文介绍第二三项。
2023-01-06 16:53:55
1078
3
原创 《多元统计分析与R语言》大作业
一、数据来源:国家统计局。国家统计局网站上(http://www.stats.gov.cn/tjsj/)有很多关于国名经济等的统计数据。注册登录,点击“统计数据”,浏览数据,根据自己的喜好,选择合适的数据进行下载,按照下面的要求进行分析。二、数据分析要求(使用R语言,下面是必须完成的内容):1.统计数据的基本统计信息,并且绘制统计图形(参照课本第2章和第3章)。2.多元相关分析。首先绘制图形,观察自变量和因变量之间的关系,选择合适的回归模型进行分析预测(参照课本第4章),对结果进行解释,绘制图形,
2022-06-11 08:54:58
3631
1
原创 【C++实训】基于MVC模型开发的高校教务管理系统【附完整报告+示例程序+日记+源码】
此项目为博主大一所作,现在看来技术较为幼稚(作为大作业足够),大神请绕路文章目录一、需求分析二、系统主要任务三、部分功能截图四、项目体验五、文档结构完整项目下载地址一、需求分析高校教务管理系统是高等教育中一个极为重要的环节,是整个院校管理的核心和基础。面对种类繁多的数据和报表,手工处理方式已经很难跟上现代化管理的步伐,随着计算机及通讯技术的飞速发展,高等教育对教务管理工作提出了更高的要求。尽快改变传统的管理模式,运用现代化手段进行科学管理,已经成为整个教育系统亟待解决的问题之一。二、系统主要任务
2022-05-27 22:32:39
697
1
原创 【深度学习实验】第四次:Python波士顿房价之构建回归预测模型
本实验中,我们将学习回归分析算法 Lasso 算法。使用 Python scikit-learn 机器学习工具。
2022-05-23 12:05:22
1694
原创 【课程作业|笔记|随记随想(2021下-2022上)】专栏目录及收费声明
佛曰:经不可轻传,亦不可以空取跟大家分享一个《西游记》里的故事:(唐僧师徒收到了无字经书)卷卷俱是白纸。长老短叹长吁的道:“我东土人果是没福!似这般无字的空本,取去何用?怎么敢见唐王!诳君之罪,诚不容诛也!”行者早已知之,对唐僧道:“师父,不消说了,这就是阿傩、伽叶那厮,问我要人事没有,故将此白纸本子与我们来了。快回去告在如来之前,问他掯财作弊之罪。”八戒嚷道:“正是!正是!告他去来!”四众急急回山,无好步,忙忙又转上雷音。不多时,到于山门之外,众皆拱手相迎,笑道:“圣僧是换经来的?”三藏点头称谢。
2022-05-22 01:11:58
884
原创 【数学建模】实验二【五】Python实现蚁群算法
关于蚁群算法这个网上的教程已经很多很详细了,比如现代优化算法(五): 蚁群算法这里摘取部分,不详述应用举例这里继续研究 1.2 中的问题例 已知敌方 100 个目标的经度、纬度如表 1 所示。我方有一个基地,经度和纬度为(70,40)。假设我方飞机的速度为 1000 公里/小时。 我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地。在敌方每一目 标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。具体算法分析详见前面推的文章数据集下载链接:ht
2022-05-16 13:29:05
1289
原创 【数学建模】实验二【四】Python实现优化遗传算法
关于优化遗传算法这个网上的教程已经很多很详细了,比如现代优化算法(四):改进的遗传算法这里摘取部分,不详述应用举例这里继续研究 1.2 中的问题例 已知敌方 100 个目标的经度、纬度如表 1 所示。我方有一个基地,经度和纬度为(70,40)。假设我方飞机的速度为 1000 公里/小时。 我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地。在敌方每一目 标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。具体算法分析详见前面推的文章数据集下载链
2022-05-15 19:24:44
704
原创 【数学建模】实验二【三】Python实现禁忌搜索算法
关于禁忌搜索算法这个网上的教程已经很多很详细了,比如禁忌搜索算法这里摘取部分,不详述应用举例例 已知敌方 100 个目标的经度、纬度如表 1 所示。我方有一个基地,经度和纬度为(70,40)。假设我方飞机的速度为 1000 公里/小时。 我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地。在敌方每一目 标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。具体算法分析详见前面推的文章数据集下载链接:https://pan.baidu.com/s/1
2022-05-15 01:29:11
973
7
原创 《多元统计分析与R语言》实验5【对应分析】
《多元统计分析与R语言》实验5【对应分析】第一部分教材P291页表格10-4,将由1660个人组成的样本按心里健康状况和社会经济状况进行交叉分组,分组结果如表所示,对这组数据进行对应分析,解释结果。高中高中中低低好12157723621轻微症状1881051419771中等症状11265775454受损8660947871数据集文件名:data_5_1.csv,下载地址:链接:https://pan.baid
2022-05-13 20:39:17
2091
2
原创 【深度学习实验】第二次:Python财政收入影响因素分析及预测
设变量$X^{(0)}=\{X^{(0)}(i),i=1,2,...,n\}$为一非负单调原始数据序列,建立灰色预测模型:首先对$X^{(0)}$进行一次累加得到一次累加序列$X^{(1)}=\{X^{(1)}(K),k=1,2,...,n\}$。对 $X^{(1)}$可建立下述一阶线性微分方程:
2022-05-13 00:39:53
2242
4
原创 【深度学习实验】第三次:Python汽车行业偷漏税行为预测
实验介绍企业做假账偷税漏税的行为普遍存在,汽车行业通过“多开发票”、“做双份报表”、“减少支出”等方式进行偷漏税。随着企业偷漏税现在泛滥,也影响国家经济基础。实验目的通过数据挖掘能自动识别企业偷漏税行为,提高稽查效率减少经济损失。汽车销售行业在税收上存在少开发票金额、少记收入,上牌、按揭、保险不入账,不及时确认保修索赔款等情况,导致政府损失大量税收。汽车销售企业的部分经营指标数据能在一定程度上评估企业的偷漏税倾向。样本数据提供了汽车销售行业纳税人的各种属性和是否偷漏税标识,提取纳税人经营特征可以建立偷
2022-05-12 19:54:32
1778
原创 【数学建模】实验二【二】Python实现遗传算法
关于遗传算法这个网上的教程已经很多很详细了,比如现代优化算法 (一):模拟退火算法 及应用举例这里摘取部分,不详述应用举例例 已知敌方 100 个目标的经度、纬度如表 1 所示。数据集下载链接:https://pan.baidu.com/s/1AmLRAZ4ypbUkUOijWmbCvQ提取码:ygtlPython代码我们编写如下的 Python 程序如下:from math import pi, sin, cos, acos, expimport matplotlib.
2022-05-12 17:55:44
490
【Python大作业】PyQt5实战之音频播放器-源码
2023-12-28
KETTLE 实验四 字段处理.docx
2023-03-06
KETTLE 实验一 实验环境.docx
2023-03-06
基于YOLOv5+PyQt5开发的可视化人数检测系统【附项目报告+演示视频+完整代码】
2022-07-01
【C++实训】基于MVC模型开发的高校教务管理系统【附完整报告+示例程序+日记+源码】
2022-05-27
基于Swing开发的校园活动报名管理系统 含【完整代码(含数据库建库语句)+完整实训报告+运行截图】
2022-05-08
改良版中华诗词网源码【HTML5,CSS3,JS】
2022-05-07
DBSCAN算法.zip
2021-11-15
省份城市匹配.json
2021-01-23
使用numpy的argsort函数对二维数组按行(列)排序,返回排序索引时出错
2022-05-12
如果给iframe的网页渲染失败,怎么得知(语言-javascript)
2021-12-27
求一个sql语句,在线等,很急
2021-05-03
TA创建的收藏夹 TA关注的收藏夹
TA关注的人