- 博客(5)
- 收藏
- 关注
原创 pandas综合练习
一、端午节的淘宝粽子交易问题 :(1) 请删除最后一列为缺失值的行,并求所有在杭州发货的商品单价均值。import pandas as pd# import numpy as npdf = pd.read_csv('PandasTest\端午粽子数据.csv')df.drop(df[df['发货地址 '].isna()].index, inplace = True)print(df[df['发货地址 '].isna()].index)(2) 商品标题带有“嘉兴”但发货地却不在嘉兴的商品有多
2020-07-01 22:00:31 195
原创 Pandas数据分析学习打卡(四):时序数据
主要内容:时序数据,我的理解就是直接以时间为索引的序列,同时对时间信息有多种方法来实现对数据的灵活操作。时间序列的创建有多种方式,可以用to_datetime方法和date_range方法来实现。时间序列支持索引和切片操作rng = pd.date_range('2020','2021', freq='W')ts = pd.Series(np.random.randn(len(rng)), index=rng)ts['2020-01-26']# 混合形态的索引ts['2020-01-26':'
2020-06-29 22:31:44 296
原创 Pandas数据分析学习打卡(三):Category分类数据
Pandas数据分析学习打卡(三):Category分类数据主要内容:对于分类数据,我的理解是,实际中会存在一类数据,它的类别是固定的,只有几种或者分为几个档次,然后pandas中的分类数据就是为此而存在。它的创建有好几种方法,可以pandas对象的创建中将dtype指定为“category”,也可以利用内置Categorical类型创建,或者利用cut函数创建:pd.Series(["a", "b", "c", "a"], dtype="category")cat = pd.Categorica
2020-06-27 22:38:43 819
原创 Pandas数据分析学习打卡(二):String文本数据
Pandas数据分析学习打卡(一):String文本数据这是Pandas数据分析学习的第二个内容——String文本数据对它的处理主要是以下几种:1.类型转换astype(),输入是代表不同类型的关键字,比如’str’、‘string’…2.拆分str.split()与拼接str.cat(),前者主要根据某一字符进行分割,返回分割后的多个字符;后者可以实现将单个Series的多个字符串元素拼接、将两个Series的对应索引的元素进行合并、将多个列对应索引进行拼接,功能很丰富。3.替换str.rep
2020-06-26 18:22:27 551 1
原创 Pandas数据分析学习打卡(一):Nullable缺失数据
Pandas数据分析学习打卡(一):Nullable缺失数据Pandas第一天的学习内容是关于缺失数据,下面是一些个人认为比较重要的内容:1.首先就是判定是否为缺失类型的isna()和notna()方法,返回的是布尔类型,可以直接对DataFrame对象使用。可以通过这个方法直接查看df中有缺失值的行:df[df['需要查看的列'].isna()]2.三种缺失符号代表缺失值,分别是numpy.nan(不等于任何值,甚至不等于自己)、None(可以等于自身)、NaT(可以看作针对时间序列的numpy
2020-06-23 21:03:35 301
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人