时间复杂度和空间复杂度

目录

1.算法效率

1.1算法复杂度

2.时间复杂度

2.1时间复杂度的概念

2.2大O的渐进表示法

2.3常见时间复杂度计算案例

3.空间复杂度

3.1空间复杂度的概念

3.2常见空间复杂度的计算案例

4.常见复杂度对比


1.算法效率

1.1算法复杂度

算法在编写成可执行程序后,运行需要耗费时间资源和空间(内存)资源。一般从时间和空间两个维度来衡量一个算法的好坏。

2.时间复杂度

2.1时间复杂度的概念

算法的时间复杂度是一个函数(此处函数为数学函数中含未知数的函数)。一个算法所花费的时间和其中语句的执行次数成正比例,算法中的基本操作的执行次数为算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}

	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}

	int M = 10;

	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

 Func1执行的基本操作次数:

                                                F(N)=N^2+2*N+10

实际中我们不要求计算精确的执行次数,只需要大概执行次数,此时就需要使用大O的渐进表示法

2.2大O的渐进表示法

大O的使用方法:

1.用常数1取代运行时间中的所有加法常数

2.只保留最高阶项,去掉那些对结果不大的项

3.如果最高阶项存在且不是1,则去除与这个项目的常数项

此时Func1的时间复杂度为:

                                                O(N^2) 

2.3常见时间复杂度计算案例

案例1

// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

答案: 

F(N)=2*N+10
O(N) 

案例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

 答案:

F()=M+N

O(M+N)

案例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

 答案:

F()=100
O(1)

 案例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

答案:

基本操作执行最好是1次,最坏是N次,时间复杂度一般看最坏。

O(N) 

3.空间复杂度

3.1空间复杂度的概念

空间复杂度也是一个数学表达式,是对一个算法在运行的过程中临时占用存储空间大小的量度

函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候申请的额外空间来确定

3.2常见空间复杂度的计算案例

案例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

答案:

使用常数个额外空间

O(1)

案例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

答案:

O(N)

案例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

答案:

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间
O(N)

4.常见复杂度对比

由小到大依次排序:

O(1) < O(log) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(n!) < O(N^n)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值