Git的环境配置(GitHub的SSH密钥的配置超详细)

Git的环境配置
1、git安装好后,再去GitHub上注册一个账号:https://github.com/
再点击桌面上的Git Bash快捷图标,我们要用账号进行环境配置了

2、在点击桌面上的Git Bash快捷图标中输入:
配置用户名:

 1. git config --global user.name "username"    //( "username"是自己的账户名,)

配置邮箱:

 1. git config --global user.email "username@qq.com"     //("username@qq.com"注册账号时用的邮箱)

在这里插入图片描述
以上命令执行结束后,可用如下命令查看配置是否OK

 1. git config --global --list 

在这里插入图片描述
3、生成ssh
继续刚才的操作,在命令框中输入命令:

 1. ssh-keygen -t rsa

然后连敲三次回车键
在这里插入图片描述
结束后去系统盘目录下(一般在 C:\Users\你的用户名.ssh)(mac: /Users/用户/.ssh)查看是否有.ssh文件夹生成,此文件夹中以下两个文件
如:在C:\用户\你的用户名.ssh目录下有

在这里插入图片描述
4、将ssh文件夹中的公钥(id_rsa.pub)添加到GitHub管理平台中,在GitHub的个人账户的设置中找到如下界面
在这里插入图片描述
在这里插入图片描述
title随便起一个,将公钥(id_rsa.pub)文件中内容复制粘贴到key中,然后点击Ass SSHkey 就好了
在这里插入图片描述
5、测试一下配置是否成功,在Git Bush命令框(就是刚才配置账号和邮箱的命令框)中继续输入以下命令,回车
输入命令:

 1. ssh -T git@github.com

在这里插入图片描述
看到这样即配置成功了,中间还需要输入:yes

### YOLOPose 损失函数解释与实现细节 YOLOPose 是一种基于单阶段检测器的目标姿态估计方法,其损失函数设计旨在优化目标位置和关键点坐标的预测精度。该模型通常采用多任务学习框架,在同一网络中联合训练边界框回归和关键点定位。 #### 损失函数组成部分 1. **坐标误差 (Coordinate Error)** 对于每个预测的关键点,计算真实值与预测值之间的欧氏距离平方差作为位置偏差项。对于第 \(i\) 个样本中的第 \(j\) 个关键点,此部分可以表示为: \[ L_{coord}^{(ij)} = w_c \sum_k{(p_x^{ijk}-\hat{p}_x^{ijk})^2+(p_y^{ijk}-\hat{p}_y^{ijk})^2} \] 其中 \(w_c\) 表示权重系数;\(k\) 遍历所有可见的关键点;\(p,\hat{p}\) 分别代表实际标签和预测结果[^1]。 2. **置信度得分 (Confidence Score Loss)** 使用二元交叉熵来衡量物体存在与否的概率评估准确性。具体形式如下所示: \[ L_{conf}(C_i,C'_i)=-(C_i log(C'_i)+(1-C_i)\log(1-C'_i)) \] 这里 \(C'\) 和 \(C\) 分别指代预测的置信度分数以及真实的类别指示向量。 3. **分类损失 (Classification Loss)** 如果涉及到多人姿态识别,则还需要引入额外的一类或多类别的分类子任务。一般情况下会选用 Softmax Cross Entropy 来处理此类问题。 4. **正则化项 (Regularization Term)** 添加L2范数惩罚以防止过拟合现象的发生,提高泛化能力。 综合上述各项构成完整的损失表达式: \[ Loss=\lambda_1*L_{coord}+\lambda_2*L_{conf}+\lambda_3*L_{cls}+R(\theta) \] 其中 \(\lambda_n\) 控制各分量的重要性程度;而最后一项 R 则是对模型参数施加约束条件。 ```python def compute_loss(pred, target): # 坐标误差 coord_mask = torch.zeros_like(target[..., :2]) coord_pred = pred[..., :2][target[..., 4] > 0] coord_target = target[..., :2][target[..., 4] > 0] l_coord = F.mse_loss(coord_pred, coord_target) # 置信度得分 conf_mask = target[..., 4].unsqueeze(-1).expand_as(pred[..., 4:]) obj_conf = pred[..., 4:5][conf_mask.bool()] noobj_conf = pred[..., 4:5][(~conf_mask.bool()) & (~torch.isnan(pred[..., 4]))] t_obj = target[..., 4:5][conf_mask.bool()] t_noobj = torch.zeros_like(noobj_conf) l_conf = F.binary_cross_entropy(obj_conf.sigmoid(), t_obj) \ + 0.5 * F.binary_cross_entropy(noobj_conf.sigmoid(), t_noobj) total_loss = l_coord + l_conf return total_loss ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值