如何让你的SQL运行得更快

----   人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略 
了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库 
环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显。笔者在工作实践 
中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的whe 
re子句。在对它们进行适当的优化后,其运行速度有了明显地提高!下面我将从这三个 
方面分别进行总结: 
----   为了更直观地说明问题,所有实例中的SQL运行时间均经过测试,不超过1秒的均 
表示为( <   1秒)。 
----   测试环境-- 
----   主机:HP   LH   II 
----   主频:330MHZ 
----   内存:128兆 
----   操作系统:Operserver5.0.4 
----数据库:Sybase11.0.3 
一、不合理的索引设计 
----例:表record有620000行,试看在不同的索引下,下面几个   SQL的运行情况: 
----   1.在date上建有一非个群集索引 
select   count(*)   from   record   where   date   > 
'19991201 '   and   date   <   '19991214 'and   amount   > 
2000   (25秒) 
select   date,sum(amount)   from   record   group   by   date 
(55秒) 
select   count(*)   from   record   where   date   > 
'19990901 '   and   place   in   ( 'BJ ', 'SH ')   (27秒) 
----   分析: 
----date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在 
范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。 
----   2.在date上的一个群集索引 
select   count(*)   from   record   where   date   > 
'19991201 '   and   date   <   '19991214 '   and   amount   > 
2000   (14秒) 
select   date,sum(amount)   from   record   group   by   date 
(28秒) 
select   count(*)   from   record   where   date   > 
'19990901 '   and   place   in   ( 'BJ ', 'SH ')(14秒) 
----   分析: 
----   在群集索引下,数据在物理上按顺序在数据页上,重复值也排列在一起,因而在范 
围查找时,可以先找到这个范围的起末点,且只在这个范围内扫描数据页,避免了大范 
围扫描,提高了查询速度。 
----   3.在place,date,amount上的组合索引 
select   count(*)   from   record   where   date   > 
'19991201 '   and   date   <   '19991214 '   and   amount   > 
2000   (26秒) 
select   date,sum(amount)   from   record   group   by   date 
(27秒) 
select   count(*)   from   record   where   date   > 
'19990901 '   and   place   in   ( 'BJ ',   'SH ')( <   1秒) 
----   分析: 
----   这是一个不很合理的组合索引,因为它的前导列是place,第一和第二条SQL没有引 
用place,因此也没有利用上索引;第三个SQL使用了place,且引用的所有列都包含在组 
合索引中,形成了索引覆盖,所以它的速度是非常快的。 
----   4.在date,place,amount上的组合索引 
select   count(*)   from   record   where   date   > 
'19991201 '   and   date   <   '19991214 '   and   amount   > 
2000( <   1秒) 
select   date,sum(amount)   from   record   group   by   date 
(11秒) 
select   count(*)   from   record   where   date   > 
'19990901 '   and   place   in   ( 'BJ ', 'SH ')( <   1秒) 
----   分析: 
----   这是一个合理的组合索引。它将date作为前导列,使每个SQL都可以利用索引,并 
且在第一和第三个SQL中形成了索引覆盖,因而性能达到了最优。 
----   5.总结: 
----   缺省情况下建立的索引是非群集索引,但有时它并不是最佳的;合理的索引设计要 
建立在对各种查询的分析和预测上。一般来说: 
----   ①.有大量重复值、且经常有范围查询 
(between,   > , <   ,> =, <   =)和order   by 
、group   by发生的列,可考虑建立群集索引; 
----   ②.经常同时存取多列,且每列都含有重复值可考虑建立组合索引; 
----   ③.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。 

二、不充份的连接条件: 
----   例:表card有7896行,在card_no上有一个非聚集索引,表account有191122行,在 
account_no上有一个非聚集索引,试看在不同的表连接条件下,两个SQL的执行情况: 

select   sum(a.amount)   from   account   a, 
card   b   where   a.card_no   =   b.card_no(20秒) 
----   将SQL改为: 
select   sum(a.amount)   from   account   a, 
card   b   where   a.card_no   =   b.card_no   and   a. 
account_no=b.account_no( <   1秒) 
----   分析: 
----   在第一个连接条件下,最佳查询方案是将account作外层表,card作内层表,利用 
card上的索引,其I/O次数可由以下公式估算为: 
----   外层表account上的22541页+(外层表account的191122行*内层表card上对应外层 
表第一行所要查找的3页)=595907次I/O 
----   在第二个连接条件下,最佳查询方案是将card作外层表,account作内层表,利用 
account上的索引,其I/O次数可由以下公式估算为: 
----   外层表card上的1944页+(外层表card的7896行*内层表account上对应外层表每一 
行所要查找的4页)=   33528次I/O 
----   可见,只有充份的连接条件,真正的最佳方案才会被执行。 
----   总结: 
----   1.多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方 
案并从中找出系统开销最小的最佳方案。连接条件要充份考虑带有索引的表、行数多的 
表;内外表的选择可由公式:外层表中的匹配行数*内层表中每一次查找的次数确定,乘 
积最小为最佳方案。 
----   2.查看执行方案的方法--   用set   showplanon,打开showplan选项,就可以看到连 
接顺序、使用何种索引的信息;想看更详细的信息,需用sa角色执行dbcc(3604,310,30 
2)。 
三、不可优化的where子句 
----   1.例:下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢: 
select   *   from   record   where 
substring(card_no,1,4)= '5378 '(13秒) 
select   *   from   record   where 
amount/30 <   1000(11秒) 
select   *   from   record   where 
convert(char(10),date,112)= '19991201 '(10秒) 
----   分析: 
----   where子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不 
进行表搜索,而没有使用该列上面的索引;如果这些结果在查询编译时就能得到,那么 
就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样: 
select   *   from   record   where   card_no   like 
'5378% '( <   1秒) 
select   *   from   record   where   amount 
<   1000*30( <   1秒) 
select   *   from   record   where   date=   '1999/12/01 ' 
( <   1秒) 
----   你会发现SQL明显快起来! 
----   2.例:表stuff有200000行,id_no上有非群集索引,请看下面这个SQL: 
select   count(*)   from   stuff   where   id_no   in( '0 ', '1 ') 
(23秒) 
----   分析: 
----   where条件中的 'in '在逻辑上相当于 'or ',所以语法分析器会将in   ( '0 ', '1 ')转化 
为id_no   = '0 '   or   id_no= '1 '来执行。我们期望它会根据每个or子句分别查找,再将结果 
相加,这样可以利用id_no上的索引;但实际上(根据showplan),它却采用了 "OR策略 " 
,即先取出满足每个or子句的行,存入临时数据库的工作表中,再建立唯一索引以去掉 
重复行,最后从这个临时表中计算结果。因此,实际过程没有利用id_no上索引,并且完 
成时间还要受tempdb数据库性能的影响。 
----   实践证明,表的行数越多,工作表的性能就越差,当stuff有620000行时,执行时 
间竟达到220秒!还不如将or子句分开: 
select   count(*)   from   stuff   where   id_no= '0 ' 
select   count(*)   from   stuff   where   id_no= '1 ' 
----   得到两个结果,再作一次加法合算。因为每句都使用了索引,执行时间只有3秒, 
在620000行下,时间也只有4秒。或者,用更好的方法,写一个简单的存储过程: 
create   proc   count_stuff   as 
declare   @a   int 
declare   @b   int 
declare   @c   int 
declare   @d   char(10) 
begin 
select   @a=count(*)   from   stuff   where   id_no= '0 ' 
select   @b=count(*)   from   stuff   where   id_no= '1 ' 
end 
select   @c=@a+@b 
select   @d=convert(char(10),@c) 
print   @d 
----   直接算出结果,执行时间同上面一样快! 
----   总结: 
----   可见,所谓优化即where子句利用了索引,不可优化即发生了表扫描或额外开销。 

----   1.任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时 
要尽可能将操作移至等号右边。 
----   2.in、or子句常会使用工作表,使索引失效;如果不产生大量重复值,可以考虑把 
子句拆开;拆开的子句中应该包含索引。 
----   3.要善于使用存储过程,它使SQL变得更加灵活和高效。 
----   从以上这些例子可以看出,SQL优化的实质就是在结果正确的前提下,用优化器可 
以识别的语句,充份利用索引,减少表扫描的I/O次数,尽量避免表搜索的发生。其实S 
QL的性能优化是一个复杂的过程,上述这些只是在应用层次的一种体现,深入研究还会 
涉及数据库层的资源配置、网络层的流量控制以及操作系统层的总体设计。
阅读更多
个人分类: 数据库
上一篇文本框得到焦点後,清空内容,失去焦点,还原成默认值
下一篇css实现网页调用服务器端字体
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭