1,概念理解
2,平台对比
平台分类\客户做的事 | llm | agent | 产品 | 品牌 |
modelscope-agent | N | Y | Y | 100% |
bailian | N | N | Y | 100% |
kimi | N | N | N | 50% |
cozi | N | N | N | 0% |
3,研发方向
我们能做的就是在大模型技术革新的红利下,进行包装开发和数据生产。
-
基于独立品牌和数据保护以及定制开发的考虑上,推荐modelscope-agent自建agent平台。开发成本并不大。
-
独立品牌:是否可以基于modelscope-agent低代码开发出具备自主品牌产品的功能?比如创建的应用分享出去,直接就是一个“自主品牌”的小程序或者网页地址,而不是像cozi一样分享出去和cozi平台撇不开干系。
-
数据保护:原始的私有化数据对任意一个平台都是诱惑力巨大,很难保证不会被平台拿走,数据保护必要性最大。
-
定制开发:比如chat历史的归纳和汇总,现在还没有,只能人为的维护一个又一个新chat,以防止不同主题的聊天信息互相掺杂,这个其实可以是只需要维护一个chat,然后自动化维护聊天历史内容,自动识别聊天历史是否和当前prompt相关。另外还可以提供回忆和总结功能,类似这样提问:我之前是不是问过一个xxx的问题?总结一下与XX有关的讨论结论,梳理一下刚才关于XX提问的几个问题,都是可以定制开发实现的。
-
-
未来AI产品只能卷内容,内容营销的时候,需要在内容曝光上把握好度,只提供类似试看功能。
-
不知对社会来说,这是好是坏,毕竟数据闭源而不是开源了。
-
应当有一种协同生产和迭代内容的方式,值得探索。
-