分布外检测(Out-of-Distribution Detection)是一种计算机视觉领域常用的技术,用于识别测试数据是否属于训练数据分布之外的样本。在许多实际应用中,我们常常需要对模型进行鲁棒性评估,以确保其在未见过的数据上也能表现良好。本文将介绍分布外检测的概念、常用方法,并给出相应的源代码示例。
一、概述
在计算机视觉任务中,训练数据通常是从特定的数据分布中采样得到的,例如,对于图像分类任务,我们可能使用ImageNet数据集进行训练。然而,当模型遇到与训练数据分布不同的样本时,其性能可能会显著下降。这些不同分布的样本可能是由于数据采集过程中的变化、噪声或者攻击造成的。
为了解决这个问题,分布外检测算法被引入,用于判断测试数据是否与训练数据分布不同。其目标是尽可能准确地识别出分布外的样本,以便采取相应的措施,如拒绝分类、进行进一步的检查或调整模型。
二、常用方法
- 基于置信度的方法
基于置信度的方法是最简单和常见的分布外检测方法之一。它通过计算模型对测试样本预测的置信度来判断样本是否属于训练数据分布。通常,该方法假设训练数据和测试数据来自同一分布,因此测试样本的置信度应该与训练样本的置信度相似。如果一个测试样本的置信度低于预先定义的阈值,那么就可以将其判定为分布外的样本。
下面是一个示例代码,演示了如何使用基于置信度的方法进行分布外检测: