题意:给定一段序列a,q个询问l,r, 求a[l]..a[r]的huffman编码长度。首先huffman编码长度怎么算呢。。其实就是以每种字符出现的次数为点权,建一棵huffman树,边权为1,它的WPL其实就是这段字符huffman编码的长度。所以我们就用莫队维护一下每个字符出现的次数啦,然后模拟建huffman树求WPL啦(可以用优先队列)。结果就TLE了。想想怎么可能这么简单吗!!我们对于所有字符出现的次数都去模拟,太慢了。怎么办?分块。出现次数小于sqrt(n)次的我们直接按出现次数为1...sqrt(n) O(1)处理,剩下的大于sqrt(n)次的我们再模拟建huffman树。具体细节见代码。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
#define N 100005
vector<int>st;
int block,n,a[N],m,f[N],ans[N],cnt[N],num[N],cnt1[N];
bool vis[N];
struct query{
int l,r,block,id;
}q[N];
inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
inline bool cmp(query x,query y){
return x.block==y.block?x.r<y.r:x.block<y.block;
}
inline void update(int x){
//莫队更新出现次数
cnt[f[a[x]]]--;
if(vis[x]) f[a[x]]--;
else f[a[x]]++;
cnt[f[a[x]]]++;
vis[x]^=1;
}
inline int cal(){
int res=0,pre=0;
priority_queue<int,vector<int>,greater<int> >que;
//greater指的是队内为递增顺序,所以top为最小
//出现次数大于sqrt(n)的直接进队
for(int i=0;i<st.size();++i) if(f[st[i]]>block) que.push(f[st[i]]);
for(int i=1;i<=block;++i) cnt1[i]=cnt[i];//备份出来用
for(int i=1;i<=block;++i) if(cnt1[i]){//O(1)处理小于根n的
if(pre){
cnt1[i]--;res+=pre+i;
if(pre+i>block) que.push(pre+i);
else cnt1[pre+i]++;
pre=0;
}
if(cnt1[i]&1){
cnt1[i]--;pre=i;
}
res+=cnt1[i]*i;
if((i<<1)>block) for(int j=1;j<=(cnt1[i]>>1);++j) que.push(i<<1);
else cnt1[i<<1]+=(cnt1[i]>>1);
}if(pre) que.push(pre);
while(que.size()>1){//模拟huffmantree算WPL
int x1=que.top();que.pop();
int x2=que.top();que.pop();
res+=x1+x2;que.push(x1+x2);
}
return res;
}
int main(){
// freopen("a.in","r",stdin);
n=read();block=sqrt(n);
for(int i=1;i<=n;++i){
a[i]=read();num[a[i]]++;
//提前把出现次数可能大于sqrt(n)的存到vector中
if(num[a[i]]==block) st.push_back(a[i]);
}
m=read();for(int i=1;i<=m;++i){
q[i].l=read();q[i].r=read();q[i].id=i;
q[i].block=(q[i].l-1)/block;
}sort(q+1,q+m+1,cmp);int l=1,r=0;
for(int i=1;i<=m;++i){
for(;l<q[i].l;++l) update(l);
for(;l>q[i].l;--l) update(l-1);
for(;r<q[i].r;++r) update(r+1);
for(;r>q[i].r;--r) update(r);
ans[q[i].id]=cal();
}
for(int i=1;i<=m;++i) printf("%d\n",ans[i]);
return 0;
}