CF 700D Huffman Coding on Segment(huffman编码分块+莫队)

题意:给定一段序列a,q个询问l,r, 求a[l]..a[r]的huffman编码长度。首先huffman编码长度怎么算呢。。其实就是以每种字符出现的次数为点权,建一棵huffman树,边权为1,它的WPL其实就是这段字符huffman编码的长度。所以我们就用莫队维护一下每个字符出现的次数啦,然后模拟建huffman树求WPL啦(可以用优先队列)。结果就TLE了。想想怎么可能这么简单吗!!我们对于所有字符出现的次数都去模拟,太慢了。怎么办?分块。出现次数小于sqrt(n)次的我们直接按出现次数为1...sqrt(n) O(1)处理,剩下的大于sqrt(n)次的我们再模拟建huffman树。具体细节见代码。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
#define N 100005
vector<int>st;
int block,n,a[N],m,f[N],ans[N],cnt[N],num[N],cnt1[N];
bool vis[N];
struct query{
	int l,r,block,id;
}q[N];
inline int read(){
	int x=0;char ch=getchar();
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
	return x;
}
inline bool cmp(query x,query y){
	return x.block==y.block?x.r<y.r:x.block<y.block;
}
inline void update(int x){
	//莫队更新出现次数 
	cnt[f[a[x]]]--;
	if(vis[x]) f[a[x]]--;
	else f[a[x]]++;
	cnt[f[a[x]]]++;
	vis[x]^=1;
}
inline int cal(){
	int res=0,pre=0;
	priority_queue<int,vector<int>,greater<int> >que;
	//greater指的是队内为递增顺序,所以top为最小
	//出现次数大于sqrt(n)的直接进队 
	for(int i=0;i<st.size();++i) if(f[st[i]]>block) que.push(f[st[i]]);
	for(int i=1;i<=block;++i) cnt1[i]=cnt[i];//备份出来用 
	for(int i=1;i<=block;++i) if(cnt1[i]){//O(1)处理小于根n的 
		if(pre){
			cnt1[i]--;res+=pre+i;
			if(pre+i>block) que.push(pre+i);
			else cnt1[pre+i]++;
			pre=0;
		}
		if(cnt1[i]&1){
			cnt1[i]--;pre=i;
		}
		res+=cnt1[i]*i; 
		if((i<<1)>block) for(int j=1;j<=(cnt1[i]>>1);++j) que.push(i<<1);
		else cnt1[i<<1]+=(cnt1[i]>>1);
	}if(pre) que.push(pre);
	while(que.size()>1){//模拟huffmantree算WPL 
		int x1=que.top();que.pop();
		int x2=que.top();que.pop();
		res+=x1+x2;que.push(x1+x2);
	}
	return res;
}
int main(){
//	freopen("a.in","r",stdin);
	n=read();block=sqrt(n);
	for(int i=1;i<=n;++i){
		a[i]=read();num[a[i]]++;
		//提前把出现次数可能大于sqrt(n)的存到vector中 
		if(num[a[i]]==block) st.push_back(a[i]);
	} 
	m=read();for(int i=1;i<=m;++i){
		q[i].l=read();q[i].r=read();q[i].id=i;
		q[i].block=(q[i].l-1)/block;
	}sort(q+1,q+m+1,cmp);int l=1,r=0;
	for(int i=1;i<=m;++i){
		for(;l<q[i].l;++l) update(l);
		for(;l>q[i].l;--l) update(l-1);
		for(;r<q[i].r;++r) update(r+1);
		for(;r>q[i].r;--r) update(r);
		ans[q[i].id]=cal();
	}
	for(int i=1;i<=m;++i) printf("%d\n",ans[i]);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值