poj1390 Blocks(区间dp)

黑书1.5.2例题1 方块消除
首先把相邻的同色块合并成一块,记录col[i],len[i],tot[i]此块后面可能再接的最大长度。用dp[i][j][k]表示区间i…j,在j块以右又接了长度k的最高得分。现在考虑第j块后面接了长度k,我们有两种策略:
1、直接消掉,那么得分就是 dp[i][j1][0]+(len[j]+k)2
2、在i…j-1区间内找一块同为颜色col[j]的块,记为p,让j块接到p块后面,那么得分就是 dp[p+1][j1][0]+dp[i][p][len[j]+k]
取最大值即可。状态数 O(n3) ,决策 O(n) ,转移 O(1) ,总的复杂度是O (n4) ,此题足够了。优化,并没想到。

#include <cstdio>
#include <cstring>
#define N 210
int tst,n,dp[N][N][N],col[N],len[N],tot[N],num;
inline int max(int x,int y){return x>y?x:y;}
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int main(){
//  freopen("a.in","r",stdin);
    tst=read();
    for(int tt=1;tt<=tst;++tt){
        n=read();num=0;tot[0]=n;
        memset(len,0,sizeof(len));
        for(int i=1;i<=n;++i){
            int x=read();if(x!=col[num]) col[++num]=x,tot[num]=tot[num-1];
            ++len[num];--tot[num];
        }
        for(int i=1;i<=num;++i) dp[i][i-1][0]=0;
        for(int i=num;i>=1;--i)
            for(int j=i;j<=num;++j)
                for(int k=0;k<=tot[j];++k){
                    dp[i][j][k]=dp[i][j-1][0]+(len[j]+k)*(len[j]+k);
                    for(int p=i;p<j;++p) if(col[p]==col[j])
                        dp[i][j][k]=max(dp[i][j][k],dp[p+1][j-1][0]+dp[i][p][len[j]+k]);
                }
        printf("Case %d: %d\n",tt,dp[1][num][0]);
    }
    return 0;
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值