首先我们要发现b[i]是随着i不降的。。。这就给我们优化提供了可能。正解也是枚举答案区间左端点,但是发现规律用二分查找分界点,优化为O(1)算出。复杂度为O(nlogn)
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
#define ll long long
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m,k,a[N],b[N];//b[i]表示i能向右延伸的最远点(即a[i]+...+a[x]<=k的x最大值)
ll s[N];
int main(){
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
n=read();m=read();k=read();
for(int i=1;i<=n;++i) a[i]=read();
int sum=0,p=1;
for(int i=1;i<=n;++i){
if(a[i]>k){
while(p<=i) b[p++]=i-1;//i自己都不行,b[i]=i-1,保证计数时为0
sum=0;continue;
}
while(sum+a[i]>k) sum-=a[p],b[p++]=i-1;
sum+=a[i];
}while(p<=n) b[p++]=n;
for(int i=1;i<=n;++i) s[i]=s[i-1]+b[i];
for(int i=1;i<=m;++i){
int l=read(),r=read();
//枚举答案区间的左端点i,贡献为min(b[i],r)-i+1.
//分两段计算,前一段贡献均为b[i]-i+1,对b数组做个前缀和就可以O(1)算出
//后一段贡献均为r-i+1,可以O(1)算出
//分界点就是使得b[i]<r的最大i值,二分找到这个值。
//所以复杂度是O(nlogn)的。
int x=std::lower_bound(b+l,b+r+1,r)-b-1;//b[x]<r的最大值
ll ans=s[x]-s[l-1]-(ll)(l+x)*(x-l+1)/2+x-l+1;
ans+=(ll)r*(r-x)-(ll)(x+1+r)*(r-x)/2+r-x;
printf("%I64d\n",ans);
}
return 0;
}