bzoj2654 tree(kruskal+二分)

orz clj
orz clj
orz clj
要求恰有ned条白边的最小生成树。我们发现,给所有白边的权值加上一个正数后,mst中白边的个数是单调不增的。因此我们可以二分给所有白边加上一个值,然后去做最小生成树,统计白边个数,若多于ned,则权值应该再加大,若少于ned,则权值应该再减小。
但是有一个很重要的细节:万一我二分x时,白边个数大于ned,但二分x+1时,却小于ned,也就是说不能二分出一个正好ned条白边的怎么办?题目保证了一定有解,怎么会出现这种情况呢?那一定是因为相同权值的边有颜色不同的。我们可以在排序时强制要求相同权值的边,白边在前。那么白边个数大于ned的也许可以通过把几个相同权值的边从白色换成黑色来达到恰好ned个。因此,在>=ned时,我们都可以更新答案。

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 50010
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,m,fa[N],ned,ans,res=0;
struct edge{
    int x,y,val,col;
}e[N<<1],a[N<<1];
inline bool cmp(edge x,edge y){//权值相同,白边在前
    return x.val==y.val?x.col<y.col:x.val<y.val;
}
inline int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
int jud(int val){
    for(int i=1;i<=n;++i) fa[i]=i;ans=0;int tot=0;
    for(int i=1;i<=m;++i) e[i]=a[i],e[i].val+=(e[i].col^1)*val;
    sort(e+1,e+m+1,cmp);
    for(int i=1;i<=m;++i){
        int xx=find(e[i].x),yy=find(e[i].y);
        if(xx!=yy){
            fa[xx]=yy;ans+=e[i].val;if(!e[i].col) tot++;
        }
    }return tot;
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();m=read();ned=read();
    for(int i=1;i<=m;++i) a[i].x=read()+1,a[i].y=read()+1,a[i].val=read(),a[i].col=read();
    int l=-100,r=100;
    while(l<=r){
        int mid=l+r>>1;int k=jud(mid);
        if(k==ned){printf("%d\n",ans-mid*ned);return 0;}
        if(k>ned) l=mid+1,res=ans-mid*ned;
        else r=mid-1;
    }
    printf("%d\n",res);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Icefox_zhx

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值