首先按外径从大到小排序,外径相同时按内径从大到小排序。这样的话我们只要按顺序选取,就已经满足了第一个条件。我们考虑第二个条件,要求ai< bj,我们显然只关心最上面(也就是最后选取的)的内径,只要我的外径比他大,我就可以放上去。
因此考虑贪心,按顺序选取,设上一个为x,当前的为y。如果ax>=by,则当前这个不能放上去,易知,后面的也不再可能放上去(b是越来越小的),因此有x的就只能摞这么高了,更新答案(我们一直累加当前的高度),然后往前删,直到ax< by,即可以接着放了为止。现在一定满足ax< by,所以我们接着放就好了,累加高度。(代码中用了data来把“肯定一起删”的点缩成一个点,能快些?orz jfy大佬)
#include <bits/stdc++.h>
using namespace std;
#define N 100010
#define ll long long
#define inf 0x3f3f3f3f
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m=0;
ll sum=0,ans=0;
struct node{
int a,b;ll h;
}a[N],data[N];
inline bool cmp(node x,node y){
return x.b==y.b?x.a>y.a:x.b>y.b;
}
int main(){
// freopen("a.in","r",stdin);
n=read();
for(int i=1;i<=n;++i) a[i].a=read(),a[i].b=read(),a[i].h=read();
sort(a+1,a+n+1,cmp);
data[++m].a=a[1].a;data[m].h=a[1].h;sum+=a[1].h;
for(int i=2;i<=n;++i){
if(data[m].a>=a[i].b){//不能再放下去了
ans=max(ans,sum);
while(m>=1&&data[m].a>=a[i].b) sum-=data[m--].h;//这些都不能再方下去了
}sum+=a[i].h;
if(data[m].a<a[i].a){
data[++m].a=a[i].a;data[m].h=a[i].h;
}else{
data[m].a=a[i].a;data[m].h+=a[i].h;
}
}ans=max(ans,sum);
printf("%I64d\n",ans);
return 0;
}
还可以dp搞,f[i]表示放前i个,第i个一定放的最大高度,则
f[i]=max{f[j]+h[i]| a[j]< b[i],0<=j< i}。是O(n^2)的,我们考虑优化,每次决策的过程就是在内径小于b[i]的点中选择一个f[j]的最大值,我们可以用线段树来做这个事情(因为是求前缀最大值,也可以用树状数组来搞,常数可能小一些)。
#include <bits/stdc++.h>
using namespace std;
#define N 100010
#define ll long long
#define inf 0x3f3f3f3f
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m=0,aa[N<<1];
ll ans=0;
struct node{
int a,b,h;
}a[N],data[N];
inline bool cmp(node x,node y){
return x.b==y.b?x.a>y.a:x.b>y.b;
}
struct tnode{
ll mx;
}tree[N<<2];
inline void build(int p,int l,int r){
if(l==r) return;
int mid=l+r>>1;
build(p<<1,l,mid);build(p<<1|1,mid+1,r);
}
ll qmax(int p,int l,int r,int x,int y){
if(x<=l&&r<=y) return tree[p].mx;
int mid=l+r>>1;ll res=0;
if(x<=mid) res=max(res,qmax(p<<1,l,mid,x,y));
if(y>mid) res=max(res,qmax(p<<1|1,mid+1,r,x,y));
return res;
}
void update(int p,int l,int r,int x,ll val){
tree[p].mx=max(tree[p].mx,val);
if(l==r) return;int mid=l+r>>1;
if(x<=mid) update(p<<1,l,mid,x,val);
else update(p<<1|1,mid+1,r,x,val);
}
int main(){
// freopen("a.in","r",stdin);
n=read();
for(int i=1;i<=n;++i) aa[++m]=a[i].a=read(),aa[++m]=a[i].b=read(),a[i].h=read();
sort(aa+1,aa+m+1);m=unique(aa+1,aa+m+1)-aa-1;
sort(a+1,a+n+1,cmp);build(1,1,m);
for(int i=1;i<=n;++i){
int xa=lower_bound(aa+1,aa+m+1,a[i].a)-aa,xb=lower_bound(aa+1,aa+m+1,a[i].b)-aa;
ll res=qmax(1,1,m,1,xb-1)+a[i].h;update(1,1,m,xa,res);ans=max(ans,res);
}
printf("%I64d\n",ans);
return 0;
}