这题真是恶心死了。。。虽然在CF413E见过类似的题了,还是没有想清楚。总结一下:就是维护一个2*n的矩形的四个顶点的联通情况(/最小距离),这个东西是具有区间“可加性”的,我们便可以用线段树来维护。每次更新操作都要重新维护受影响的区间信息。这题关键的地方在于询问。两点间连通的可能性太多了,见bzoj提供的题解的图。可能左点向左绕一圈,右点向右绕一圈,两点才相会,这种情况怎么解决呢?如果左点为(1,x),则绕一圈后一定会经过(2,x),我们只关心(1,x)能否到达(2,x)即可。右点同理。所以分别询问(1,x)(x,y)(y,n)三个矩形的连通情况,综合判断即可。
popoqqq大爷的题解:传送门
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 100010
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n;
bool a[N][2];//a[x][0]=1,(1,x)->(1,x+1)连通 a[x][1]=1,(2,x)->(2,x+1)连通
struct data{
bool a[6];//a[0]-(1,x)->(1,y),a[1]-(2,x)->(2,y),
//a[2]-(1,x)->(2,y),a[3]-(2,x)->(1,y),a[4]-(1,x)->(2,x),a[5]-(1,y)->(2,y)
};
struct node{
data x;
}tree[N<<2];
data merge(int x,data l,data r){
data res;
res.a[0]=(l.a[0]&a[x][0]&r.a[0])|(l.a[2]&a[x][1]&r.a[3]);
res.a[1]=(l.a[1]&a[x][1]&r.a[1])|(l.a[3]&a[x][0]&r.a[2]);
res.a[2]=(l.a[0]&a[x][0]&r.a[2])|(l.a[2]&a[x][1]&r.a[1]);
res.a[3]=(l.a[1]&a[x][1]&r.a[3])|(l.a[3]&a[x][0]&r.a[0]);
res.a[4]=l.a[4]|(l.a[0]&a[x][0]&r.a[4]&a[x][1]&l.a[1]);
res.a[5]=r.a[5]|(r.a[0]&a[x][0]&l.a[5]&a[x][1]&r.a[1]);
return res;
}
void build(int p,int l,int r){
if(l==r){tree[p].x.a[0]=tree[p].x.a[1]=1;return;}
int mid=l+r>>1;
build(p<<1,l,mid);build(p<<1|1,mid+1,r);
}
void update(int p,int l,int r,int x){
int mid=r+l>>1;
if(mid==x){//合并这个区间时会受到x,x+1有无边的影响
tree[p].x=merge(x,tree[p<<1].x,tree[p<<1|1].x);return;
}if(x<=mid) update(p<<1,l,mid,x);
else update(p<<1|1,mid+1,r,x);
tree[p].x=merge(mid,tree[p<<1].x,tree[p<<1|1].x);
}
void change(int p,int l,int r,int x,int op){
if(l==r){tree[p].x.a[2]=tree[p].x.a[3]=tree[p].x.a[4]=tree[p].x.a[5]=op;return;}
int mid=l+r>>1;
if(x<=mid) change(p<<1,l,mid,x,op);
else change(p<<1|1,mid+1,r,x,op);
tree[p].x=merge(mid,tree[p<<1].x,tree[p<<1|1].x);
}
void modify(int r1,int c1,int r2,int c2,bool op){
if(r1==r2){
a[c1][r1-1]=op;update(1,1,n,c1);
}else change(1,1,n,c1,op);
}
data ask(int p,int l,int r,int x,int y){
if(x<=l&&r<=y) return tree[p].x;
int mid=l+r>>1;
if(y<=mid) return ask(p<<1,l,mid,x,y);
if(x>mid) return ask(p<<1|1,mid+1,r,x,y);
return merge(mid,ask(p<<1,l,mid,x,y),ask(p<<1|1,mid+1,r,x,y));
}
bool jud(int r1,int c1,int r2,int c2){
data res=ask(1,1,n,c1,c2),resl=ask(1,1,n,1,c1),resr=ask(1,1,n,c2,n);
if(r1==1&&r2==1){
return res.a[0]|(resl.a[5]&res.a[3])|(resr.a[4]&res.a[2])|(resl.a[5]&resr.a[4]&res.a[1]);
}
if(r1==2&&r2==2){
return res.a[1]|(resl.a[5]&res.a[2])|(resr.a[4]&res.a[3])|(resl.a[5]&resr.a[4]&res.a[0]);
}
if(r1==1&&r2==2){
return res.a[2]|(resl.a[5]&res.a[1])|(resr.a[4]&res.a[0])|(resl.a[5]&resr.a[4]&res.a[3]);
}
if(r1==2&&r2==1){
return res.a[3]|(resl.a[5]&res.a[0])|(resr.a[4]&res.a[1])|(resl.a[5]&resr.a[4]&res.a[2]);
}
}
int main(){
// freopen("a.in","r",stdin);
n=read();build(1,1,n);
while(1){
char op[10];scanf("%s",op+1);
if(op[1]=='E') break;
int r1=read(),c1=read(),r2=read(),c2=read();
if(c1>c2) swap(c1,c2),swap(r1,r2);
if(op[1]=='O') modify(r1,c1,r2,c2,1);
if(op[1]=='C') modify(r1,c1,r2,c2,0);
if(op[1]=='A') puts(jud(r1,c1,r2,c2)?"Y":"N");
}
return 0;
}