这题妙啊。。。堪称优先队列中的典范了啊。。。
首先预处理出L数组,表示右边界为i,左边界最多能扩展到L[i] 。这个过程可以通过两个单调队列和一个指针p解决,分别维护区间最大最小值即可。复杂度O(n)
然后进行dp,dp[i]表示前i个数至少分成几部分,不能分的为inf,考虑转移:
dp[i]=min{dp[j]| L[i]-1<=j<=i-l}+1,然而朴素转移是O(n^2)的,显然会T。而我们可以再用一个优先队列来优化dp。(因为j的取值范围是单增的,所以比较显然。)总的复杂度还是O(n)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 100010
#define pa pair<int,int>
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,s,l,a[N],L[N],dp[N];//L[i]表示右边界为i,左边界最多能扩展到L[i]
deque<pa>mx,mn,q;
int main(){
// freopen("a.in","r",stdin);
n=read();s=read();l=read();
for(int i=1;i<=n;++i) a[i]=read();
for(int i=1,p=1;i<=n;++i){
while(!mx.empty()&&mx.front().first>a[i]+s) p=mx.front().second+1,mx.pop_front();
while(!mn.empty()&&mn.front().first<a[i]-s) p=mn.front().second+1,mn.pop_front();
L[i]=p;
while(!mx.empty()&&mx.back().first<a[i]) mx.pop_back();
while(!mn.empty()&&mn.back().first>a[i]) mn.pop_back();
mx.push_back(make_pair(a[i],i));mn.push_back(make_pair(a[i],i));
}memset(dp,inf,sizeof(dp));dp[0]=0;//dp[i]表示前i个数至少分成几部分
for(int i=l;i<=n;++i){//先把i-l加进去,再把不合法的去掉,因为i-l也可能不合法
while(!q.empty()&&q.back().first>dp[i-l]) q.pop_back();
q.push_back(make_pair(dp[i-l],i-l));
while(!q.empty()&&q.front().second<L[i]-1) q.pop_front();
if(!q.empty()&&q.front().first!=inf) dp[i]=q.front().first+1;
}if(dp[n]==inf) puts("-1");
else printf("%d\n",dp[n]);
return 0;
}