NOIP2017提高组D1

本文提供了三道编程竞赛题目的解答思路及代码实现:T1 数论题目求解,T2 利用栈模拟复杂度问题,T3 利用 parkspfa、tarjan 算法解决图论中的 0 环问题并结合拓扑排序进行 dp 计算。
摘要由CSDN通过智能技术生成

D1
T1.math数论
T2.complexity模拟(栈)
T3.park spfa+tarjan缩点找0环+拓扑序dp

A

#include <cstdio>
#include <cstring>
#define ll long long
#define inf 0x3f3f3f3f
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,m;
int main(){
//  freopen("math.in","r",stdin);
//  freopen("math.out","w",stdout);
    n=read();m=read();
    printf("%lld\n",(ll)n*m-n-m);
    return 0;
}

B

#include <cstdio>
#include <cstring>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 110
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int tst,n,f[N],res=0;
bool inq['z'+1];
char re[N],op[N][3],var[N][3],a[N][10],b[N][10];
inline bool check(){
    stack<int>q;memset(inq,0,sizeof(inq));
    for(int i=1;i<=n;++i){
        if(op[i][1]=='F'){
            if(inq[var[i][1]]) return 0;
            q.push(var[i][1]),inq[var[i][1]]=1;
        }
        else{
            if(q.empty()) return 0;
            int x=q.top();q.pop();inq[x]=0;
        }
    }if(!q.empty()) return 0;return 1;
}
int main(){
//  freopen("complexity.in","r",stdin);
//  freopen("complexity.out","w",stdout);
    tst=read();
    while(tst--){
        n=read();scanf("%s",re+1);memset(f,0,sizeof(f));res=0;
        if(re[3]=='n'){
            if(re[5]>='0'&&re[5]<='9') res=res*10+re[5]-'0';
            if(re[6]>='0'&&re[6]<='9') res=res*10+re[6]-'0';
        }
        for(int i=1;i<=n;++i){
            scanf("%s",op[i]+1);
            if(op[i][1]=='F'){
                scanf("%s%s%s",var[i]+1,a[i]+1,b[i]+1);
                if(a[i][1]=='n'&&b[i][1]=='n') f[i]=0;
                else if(a[i][1]=='n') f[i]=-1;
                else if(b[i][1]=='n') f[i]=1;
                else{
                    int x=a[i][1]-'0',y=b[i][1]-'0';
                    if(a[i][2]>='0'&&a[i][2]<='9') x=x*10+a[i][2]-'0';
                    if(b[i][2]>='0'&&b[i][2]<='9') y=y*10+b[i][2]-'0';
                    if(x<=y) f[i]=0;else f[i]=-1;
                }
            }
        }if(!check()){puts("ERR");continue;}
        stack<int>q;int sum=0,ans=0,fail=0;
        for(int i=1;i<=n;++i){
            if(op[i][1]=='F'){
                q.push(f[i]);if(f[i]==-1) fail++;
                else if(!fail) sum+=f[i];ans=max(ans,sum);
            }else{
                int x=q.top();q.pop();if(x==-1) fail--;
                else if(!fail) sum-=x;
            }
        }
        puts(res==ans?"Yes":"No");
    }return 0;
}

C

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 100020
#define pa pair<int,int>
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,m,k,mod,h[N],num=0,dis[N],dp[N][60],tst,h1[N],dis1[N],w[N<<1];
int dfnum=0,dfn[N],low[N],scc=0,sz[N],du[N][60];
bool inq[N],bad[N<<1];
struct edge{
    int fr,to,next,val;
}data[N<<1],data1[N<<1];
void spfa(){
    queue<int>q;memset(dis,0x3f,sizeof(dis));
    q.push(1);inq[1]=1;dis[1]=0;
    while(!q.empty()){
        int x=q.front();q.pop();inq[x]=0;
        for(int i=h[x];i;i=data[i].next){
            int y=data[i].to;
            if(dis[y]>dis[x]+data[i].val){
                dis[y]=dis[x]+data[i].val;
                if(!inq[y]) inq[y]=1,q.push(y);
            }
        }
    }
}
void spfa1(){
    queue<int>q;memset(dis1,0x3f,sizeof(dis));
    q.push(n);inq[n]=1;dis1[n]=0;
    while(!q.empty()){
        int x=q.front();q.pop();inq[x]=0;
        for(int i=h1[x];i;i=data1[i].next){
            int y=data1[i].to;
            if(dis1[y]>dis1[x]+data1[i].val){
                dis1[y]=dis1[x]+data1[i].val;
                if(!inq[y]) inq[y]=1,q.push(y);
            }
        }
    }
}stack<int>qq;
void tarjan(int x){
    dfn[x]=low[x]=++dfnum;qq.push(x);inq[x]=1;
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;if(data[i].val||bad[i]) continue;
        if(!dfn[y]) tarjan(y),low[x]=min(low[x],low[y]);
        else if(inq[y]) low[x]=min(low[x],dfn[y]);
    }
    if(low[x]==dfn[x]){
        ++scc;sz[scc]=0;while(1){
            int y=qq.top();qq.pop();inq[y]=0;
            sz[scc]++;if(y==x) break;
        }
    }
}
int main(){
//  freopen("a.in","r",stdin);
    tst=read();
    while(tst--){
        n=read();m=read();k=read();mod=read();memset(bad,0,sizeof(bad));
        memset(h,0,sizeof(h));num=0;memset(dp,0,sizeof(dp));dp[1][0]=1;
        bool flag=0;memset(du,0,sizeof(du));memset(h1,0,sizeof(h1));
        for(int i=1;i<=m;++i){
            int x=read(),y=read(),val=read();
            data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].val=val;data[num].fr=x;
            data1[num].to=x;data1[num].next=h1[y];h1[y]=num;data1[num].val=val;data1[num].fr=y;
        }spfa();spfa1();dfnum=0;memset(dfn,0,sizeof(dfn));scc=0;
        for(int i=1;i<=m;++i)//删去不可能存在在答案中的边 
            if(dis[data[i].fr]+data[i].val+dis1[data[i].to]>dis[n]+k) bad[i]=1;
            else w[i]=dis[data[i].fr]+data[i].val-dis[data[i].to];
        for(int i=1;i<=n;++i) if(!dfn[i]) tarjan(i);//缩点标记0环
        for(int i=1;i<=scc;++i) if(sz[i]>=2){flag=1;break;}
        if(flag){puts("-1");continue;}//如果还有0环,肯定无穷多解
        for(int x=1;x<=n;++x)
            for(int i=h[x];i;i=data[i].next){
                if(bad[i]) continue;int y=data[i].to;
                for(int j=0;j+w[i]<=k;++j) du[y][j+w[i]]++;
            }queue<pa>q;
        for(int i=1;i<=n;++i)
            for(int j=0;j<=k;++j) if(!du[i][j]) q.push(make_pair(i,j));
        while(!q.empty()){
            int x=q.front().first,j=q.front().second;q.pop();
            for(int i=h[x];i;i=data[i].next){
                if(bad[i]) continue;int y=data[i].to;
                if(j+w[i]>k) continue;dp[y][j+w[i]]=(dp[y][j+w[i]]+dp[x][j])%mod;
                if(--du[y][j+w[i]]==0) q.push(make_pair(y,j+w[i]));
            }
        }int ans=0;for(int j=0;j<=k;++j) ans=(ans+dp[n][j])%mod;
        printf("%d\n",ans);
    }return 0;
}
# P1563 [NOIP 2016 提高] 玩具谜题 ## 题目背景 NOIP2016 提高 D1T1 ## 题目描述 小南有一套可爱的玩具小人,它们各有不同的职业。 有一天,这些玩具小人把小南的眼镜藏了起来。小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外。如下图: ![](https://cdn.luogu.com.cn/upload/image_hosting/0u7em9pi.png) 这时 singer 告诉小南一个谜题:“眼镜藏在我左数第 $3$ 个玩具小人的右数第 $1$ 个玩具小人的左数第 $2$ 个玩具小人那里。” 小南发现,这个谜题中玩具小人的朝向非常关键,因为朝内和朝外的玩具小人的左右方向是相反的:面朝圈内的玩具小人,它的左边是顺时针方向,右边是逆时针方向;而面向圈外的玩具小人,它的左边是逆时针方向,右边是顺时针方向。 小南一边艰难地辨认着玩具小人,一边数着: singer 朝内,左数第 $3$ 个是 archer。 archer 朝外,右数第 $1$ 个是 thinker。 thinker 朝外,左数第 $2$ 个是 writer。 所以眼镜藏在 writer 这里! 虽然成功回了眼镜,但小南并没有放心。如果下次有更多的玩具小人藏他的眼镜,或是谜题的长度更长,他可能就无法到眼镜了。所以小南希望你写程序帮他解决类似的谜题。这样的谜題具体可以描述为: 有 $n$ 个玩具小人围成一圈,已知它们的职业和朝向。现在第 $1$ 个玩具小人告诉小南一个包含 $m$ 条指令的谜題,其中第 $z$ 条指令形如“向左数/右数第 $s$ 个玩具小人”。你需要输出依次数完这些指令后,到达的玩具小人的职业。 ## 输入格式 输入的第一行包含两个正整数 $n,m$,表示玩具小人的个数和指令的条数。 接下来 $n$ 行,每行包含一个整数和一个字符串,以逆时针为顺序给出每个玩具小人的朝向和职业。其中 $0$ 表示朝向圈内,$1$ 表示朝向圈外。保证不会出现其他的数。字符串长度不超过 $10$ 且仅由英文字母构成,字符串不为空,并且字符串两两不同。整数和字符串之间用一个空格隔开。 接下来 $m$ 行,其中第 $i$ 行包含两个整数 $a_i,s_i$,表示第 $i$ 条指令。若 $a_i=0$,表示向左数 $s_i$ 个人;若 $a_i=1$,表示向右数 $s_i$ 个人。 保证 $a_i$ 不会出现其他的数,$1 \le s_i < n$。 ## 输出格式 输出一个字符串,表示从第一个读入的小人开始,依次数完 $m$ 条指令后到达的小人的职业。 ## 输入输出样例 #1 ### 输入 #1 ``` 7 3 0 singer 0 reader 0 mengbier 1 thinker 1 archer 0 writer 1 mogician 0 3 1 1 0 2 ``` ### 输出 #1 ``` writer ``` ## 输入输出样例 #2 ### 输入 #2 ``` 10 10 1 C 0 r 0 P 1 d 1 e 1 m 1 t 1 y 1 u 0 V 1 7 1 1 1 4 0 5 0 3 0 1 1 6 1 2 0 8 0 4 ``` ### 输出 #2 ``` y ``` ## 说明/提示 **样例 1 说明** 这数据就是【题目描述】中提到的例子。 **子任务** 子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解决一部分测试数据。 每个测试点的数据规模及特点如下表: ![](https://cdn.luogu.com.cn/upload/image_hosting/7su06u3r.png) 其中一些简写的列意义如下: - 全朝内:若为 $\surd$,表示该测试点保证所有的玩具小人都朝向圈内; - 全左数:若为 $\surd$,表示该测试点保证所有的指令都向左数,即对任意的 $1\leq z\leq m, a_i=0$; - $s=1$:若为 $\surd$,表示该测试点保证所有的指令都只数 $1$ 个,即对任意的 $1\leq z\leq m,s_i=1$; 职业长度为 $1$:若为 $\surd$,表示该测试点保证所有玩具小人的职业一定是一个长度为 $1$ 的字符串。 给出解题思路
最新发布
03-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值