首先要对输入数据离散化,然后源点向1连边,容量为k,费用为0,最后一个点向T连边,容量为inf,费用为0,所有的li向ri连边,容量为1,费用为区间长度,所有i向i+1连边,容量为inf,费用为0。这样的话最大流一定满足条件,然后最大费用最大流就是答案了。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
#define inf 0x3f3f3f3f
#define N 1100
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,k,a[N],l[N],r[N],h[N],num=1,nn=0,T=1001,ans=0,dis[N],path[N];
bool inq[N];
struct edge{
int to,next,w,c;
}data[5000];
inline void add(int x,int y,int w,int c){
data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].w=w;data[num].c=c;
data[++num].to=x;data[num].next=h[y];h[y]=num;data[num].w=0;data[num].c=-c;
}
inline bool spfa(){
queue<int>q;memset(dis,128,sizeof(dis));memset(path,0,sizeof(path));
q.push(0);dis[0]=0;inq[0]=1;
while(!q.empty()){
int x=q.front();q.pop();inq[x]=0;
for(int i=h[x];i;i=data[i].next){
int y=data[i].to;if(!data[i].w) continue;
if(dis[x]+data[i].c>dis[y]){
dis[y]=dis[x]+data[i].c;path[y]=i;
if(!inq[y]) inq[y]=1,q.push(y);
}
}
}return path[T];
}
int main(){
// freopen("a.in","r",stdin);
n=read();k=read();
for(int i=1;i<=n;++i){
a[++nn]=l[i]=read(),a[++nn]=r[i]=read();
if(l[i]>r[i]) swap(l[i],r[i]);
}
sort(a+1,a+nn+1);nn=unique(a+1,a+nn+1)-a-1;
add(0,1,k,0);add(nn,T,inf,0);
for(int i=1;i<=n;++i){
int x=lower_bound(a+1,a+nn+1,l[i])-a;
int y=lower_bound(a+1,a+nn+1,r[i])-a;
add(x,y,1,r[i]-l[i]);
}for(int i=1;i<nn;++i) add(i,i+1,inf,0);
while(spfa()){
int low=inf,now=T;
while(path[now]) low=min(low,data[path[now]].w),now=data[path[now]^1].to;
ans+=low*dis[T];now=T;
while(path[now]) data[path[now]].w-=low,data[path[now]^1].w+=low,now=data[path[now]^1].to;
}printf("%d\n",ans);return 0;
}