loj6014「网络流 24 题」最长 k 可重区间集(费用流)

首先要对输入数据离散化,然后源点向1连边,容量为k,费用为0,最后一个点向T连边,容量为inf,费用为0,所有的li向ri连边,容量为1,费用为区间长度,所有i向i+1连边,容量为inf,费用为0。这样的话最大流一定满足条件,然后最大费用最大流就是答案了。

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
#define inf 0x3f3f3f3f
#define N 1100
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,k,a[N],l[N],r[N],h[N],num=1,nn=0,T=1001,ans=0,dis[N],path[N];
bool inq[N];
struct edge{
    int to,next,w,c;
}data[5000];
inline void add(int x,int y,int w,int c){
    data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].w=w;data[num].c=c;
    data[++num].to=x;data[num].next=h[y];h[y]=num;data[num].w=0;data[num].c=-c;
}
inline bool spfa(){
    queue<int>q;memset(dis,128,sizeof(dis));memset(path,0,sizeof(path));
    q.push(0);dis[0]=0;inq[0]=1;
    while(!q.empty()){
        int x=q.front();q.pop();inq[x]=0;
        for(int i=h[x];i;i=data[i].next){
            int y=data[i].to;if(!data[i].w) continue;
            if(dis[x]+data[i].c>dis[y]){
                dis[y]=dis[x]+data[i].c;path[y]=i;
                if(!inq[y]) inq[y]=1,q.push(y);
            }
        }
    }return path[T];
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();k=read();
    for(int i=1;i<=n;++i){
        a[++nn]=l[i]=read(),a[++nn]=r[i]=read();
        if(l[i]>r[i]) swap(l[i],r[i]);
    }
    sort(a+1,a+nn+1);nn=unique(a+1,a+nn+1)-a-1;
    add(0,1,k,0);add(nn,T,inf,0);
    for(int i=1;i<=n;++i){
        int x=lower_bound(a+1,a+nn+1,l[i])-a;
        int y=lower_bound(a+1,a+nn+1,r[i])-a;
        add(x,y,1,r[i]-l[i]);
    }for(int i=1;i<nn;++i) add(i,i+1,inf,0);
    while(spfa()){
        int low=inf,now=T;
        while(path[now]) low=min(low,data[path[now]].w),now=data[path[now]^1].to;
        ans+=low*dis[T];now=T;
        while(path[now]) data[path[now]].w-=low,data[path[now]^1].w+=low,now=data[path[now]^1].to;
    }printf("%d\n",ans);return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值