要求判断是否能用若干环路覆盖所有空地,环大小>2。
我们发现环一定是偶环,然后每个点度为2,可以直接二分图染色,看作每个白点向黑点流出2。源向白点连容量为2的边,黑点向汇连容量为2的边,白点向四连通的空地连边,容量为1,然后最大流看是否满流。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 1010
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m,tst,h[N],num=1,ans=0,id[40][40],lev[N],T=1000,cur[N];
int dx[]={0,0,1,-1},dy[]={1,-1,0,0};
char mp[40][40];
struct edge{
int to,next,val;
}data[5500];
inline void add(int x,int y,int val){
data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].val=val;
data[++num].to=x;data[num].next=h[y];h[y]=num;data[num].val=0;
}
inline bool bfs(){
queue<int>q;memset(lev,0,sizeof(lev));
lev[0]=1;q.push(0);
while(!q.empty()){
int x=q.front();q.pop();
for(int i=h[x];i;i=data[i].next){
int y=data[i].to;if(lev[y]||!data[i].val) continue;
lev[y]=lev[x]+1;if(y==T) return 1;q.push(y);
}
}return 0;
}
inline int dinic(int x,int low){
if(x==T) return low;int tmp=low;
for(int &i=cur[x];i;i=data[i].next){
int y=data[i].to;if(lev[y]!=lev[x]+1||!data[i].val) continue;
int res=dinic(y,min(tmp,data[i].val));
if(!res) lev[y]=0;else tmp-=res,data[i].val-=res,data[i^1].val+=res;
if(!tmp) return low;
}return low-tmp;
}
int main(){
// freopen("a.in","r",stdin);
tst=read();
while(tst--){
n=read();m=read();int tot=0;
num=1;memset(h,0,sizeof(h));ans=0;
for(int i=1;i<=n;++i) scanf("%s",mp[i]+1);
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j) id[i][j]=++tot;tot=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j){
if(mp[i][j]=='#') continue;tot++;
if(i+j&1) add(0,id[i][j],2);
else{add(id[i][j],T,2);continue;}
for(int k=0;k<4;++k){
int x=i+dx[k],y=j+dy[k];
if(x<1||x>n||y<1||y>m||mp[x][y]=='#') continue;
add(id[i][j],id[x][y],1);
}
}if(tot&1){puts("NO");continue;}
while(bfs()){memcpy(cur,h,sizeof(h));ans+=dinic(0,inf);}
puts(ans==tot?"YES":"NO");
}return 0;
}