类似bzoj3894,S向每个点建边,容量为种在A的收益,每个点向T建边,容量为种在B的收益,对于每一个点,我们必然要割掉连向S或T的一条且仅一条边。对于割之后的图,S集的点均选择了种在A,T集的点均选择了种在B。那对于共同种在A地有额外收益的点怎么办呢?,我们新建一个点x,S向x连边,容量为收益,x向所有需要共同种在A的点连边,容量为inf,则如果这些点有一个点没有割掉向T的连边,我们势必要割掉收益这条边。如果收益这条边没被割掉,则说明他所需要的点最后都割了向T的连边,也就是都在S集中,也就是都种在了A,符合题意。对于共同种在B的有额外收益的也同理,新建一个点x,x向T连边,容量为收益,所有需要共同种在B的点向x连边,容量为inf。则最后答案就是总收益-最小割。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
#define N 3010
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m,ans=0,h[N],num=1,lev[N],T=3001,cur[N];
struct edge{
int to,next,val;
}data[4100000];
inline void add(int x,int y,int val){
data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].val=val;
data[++num].to=x;data[num].next=h[y];h[y]=num;data[num].val=0;
}
inline bool bfs(){
queue<int>q;memset(lev,0,sizeof(lev));
q.push(0);lev[0]=1;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=h[x];i;i=data[i].next){
int y=data[i].to;if(lev[y]||!data[i].val) continue;
lev[y]=lev[x]+1;if(y==T) return 1;q.push(y);
}
}return 0;
}
inline int dinic(int x,int low){
if(x==T) return low;int tmp=low;
for(int &i=cur[x];i;i=data[i].next){
int y=data[i].to;if(lev[y]!=lev[x]+1||!data[i].val) continue;
int res=dinic(y,min(tmp,data[i].val));
if(!res) lev[y]=0;else tmp-=res,data[i].val-=res,data[i^1].val+=res;
if(!tmp) return low;
}return low-tmp;
}
int main(){
// freopen("a.in","r",stdin);
n=read();
for(int i=1;i<=n;++i){
int x=read();add(0,i,x);ans+=x;
}for(int i=1;i<=n;++i){
int x=read();add(i,T,x);ans+=x;
}m=read();
for(int i=1;i<=m;++i){
int owo=read(),x=read();add(0,i+n,x);ans+=x;
x=read();add(i+n+m,T,x);ans+=x;
while(owo--){
x=read();add(i+n,x,inf);add(x,i+n+m,inf);
}
}while(bfs()){memcpy(cur,h,sizeof(h));ans-=dinic(0,inf);}
printf("%d\n",ans);
return 0;
}