f[i][j][k][t],表示i~j能否匹配到s[k]的第t个字母。
c[i][j]表示i~j能否全部消除。倒序枚举i,我们有转移:
f[i][j][k][t]=f[i][j-1][k][t-1]&a[j]==s[k][t]
f[i][j][k][t]|=f[i][d][k][t]&&c[d+1][j]。
最后再来一个dp[i],表示前i数最少剩几个,利用c数组来转移即可。复杂度
O(|L|3∗|S|∗|p|)
.
可以把最后一维t状压掉,加速一下转移。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 160
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int m,n,len[40],dp[N];
bool f[N][N][40][30],c[N][N];
char a[N],s[40][30];
int main(){
// freopen("a.in","r",stdin);
scanf("%s",a+1);m=strlen(a+1);n=read();
for(int i=1;i<=n;++i){
scanf("%s",s[i]+1);len[i]=strlen(s[i]+1);
}for(int i=m;i>=1;--i)
for(int j=i;j<=m;++j){
for(int k=1;k<=n;++k){
f[i][i-1][k][0]=1;
for(int t=1;t<=len[k];++t){
f[i][j][k][t]=(f[i][j-1][k][t-1]&a[j]==s[k][t]);
for(int d=i;d<j;++d) f[i][j][k][t]|=(f[i][d][k][t]&c[d+1][j]);
}if(f[i][j][k][len[k]]) c[i][j]=1;
}
}
for(int i=1;i<=m;++i){
dp[i]=dp[i-1]+1;
for(int j=1;j<=i;++j) if(c[j][i]) dp[i]=min(dp[i],dp[j-1]);
}printf("%d\n",dp[m]);
return 0;
}