我们把给定的边连成图,根据题目要求是一张二分图。
这张图的补图的最大团就是原图的最大点独立集。因此我们就是要求删掉哪条边以后最大点独立集会变大。
最大点独立集=点数-最小点覆盖集,而最小点覆盖集就是二分图的最大匹配。因此我们就是要求哪些边一定在最大匹配上。
我们可以跑一遍网络流来求最大匹配,然后考虑对残余网络求scc。
一条边一定出现在最大匹配中,当且仅当他是满流边且两端点不处于同一scc中。
为什么呢?因为这样的边至少是第一次我们求出的最大匹配中的匹配边(即满流边),如果两端点x,y处于同一scc中,则一定会存在一条交替路(环)通过x,y,我们可以对这条交替路(环)取反,此时仍然存在最大匹配,而这条边就不再是匹配边了。
一开始有一个naive的想法,类似poj1904那样去做,但是只有是完备匹配的情况下才能那么做,因为如果是完备匹配的话就只会存在交替环,不可能存在交替路,因此直接判环就可以了。而如果不是完备匹配的话,可能会存在过x,y的交替路,这时只判环就会误把一些边当做一定出现的边。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 10010
#define M 150010
inline char gc(){
static char buf[1<<16],*S,*T;
if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
return x*f;
}
int n,m,h[N],num=1,cur[N],lev[N],T=10005,col[N],dfn[N],low[N],dfnum=0,scc=0,bel[N];
bool inq[N];stack<int>qq;
struct Edge{
int x,y;bool f;
}e[M];
inline bool cmp(Edge a,Edge b){return a.f==b.f?(a.x==b.x?a.y<b.y:a.x<b.x):a.f>b.f;}
struct edge{
int to,next,val;
}data[M+N<<1];
inline void add(int x,int y,int val){
data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].val=val;
data[++num].to=x;data[num].next=h[y];h[y]=num;data[num].val=0;
}
inline void add1(int x,int y){
data[++num].to=y;data[num].next=h[x];h[x]=num;
data[++num].to=x;data[num].next=h[y];h[y]=num;
}
void dfs(int x){
for(int i=h[x];i;i=data[i].next){
int y=data[i].to;if(col[y]==-1) col[y]=col[x]^1,dfs(y);
}
}
inline bool bfs(){
queue<int>q;memset(lev,0,sizeof(lev));
q.push(0);lev[0]=1;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=h[x];i;i=data[i].next){
int y=data[i].to;if(lev[y]||!data[i].val) continue;
lev[y]=lev[x]+1;if(y==T) return 1;q.push(y);
}
}return 0;
}
inline int dinic(int x,int low){
if(x==T) return low;int tmp=low;
for(int &i=cur[x];i;i=data[i].next){
int y=data[i].to;if(lev[y]!=lev[x]+1||!data[i].val) continue;
int res=dinic(y,min(tmp,data[i].val));
if(!res) lev[y]=0;else tmp-=res,data[i].val-=res,data[i^1].val+=res;
if(!tmp) return low;
}return low-tmp;
}
void tarjan(int x){
low[x]=dfn[x]=++dfnum;qq.push(x);inq[x]=1;
for(int i=h[x];i;i=data[i].next){
int y=data[i].to;if(!data[i].val) continue;
if(!dfn[y]) tarjan(y),low[x]=min(low[x],low[y]);
else if(inq[y]) low[x]=min(low[x],dfn[y]);
}if(low[x]==dfn[x]){
++scc;while(1){
int y=qq.top();qq.pop();inq[y]=0;
bel[y]=scc;if(y==x) break;
}
}
}
int main(){
// freopen("a.in","r",stdin);
n=read();m=read();int ans=0;
for(int i=1;i<=m;++i) e[i].x=read(),e[i].y=read(),add1(e[i].x,e[i].y);
memset(col,-1,sizeof(col));
for(int i=1;i<=n;++i) if(col[i]==-1) col[i]=0,dfs(i);
memset(h,0,sizeof(h));num=1;
for(int i=1;i<=m;++i){
if(col[e[i].x]) add(e[i].y,e[i].x,1);
else add(e[i].x,e[i].y,1);
}for(int i=1;i<=n;++i){
if(col[i]) add(i,T,1);
else add(0,i,1);
}while(bfs()){memcpy(cur,h,sizeof(h));dinic(0,inf);}
for(int i=1;i<=n;++i) if(!dfn[i]) tarjan(i);num=1;
for(int i=1;i<=m;++i){
if(e[i].x>e[i].y) swap(e[i].x,e[i].y);++num;
if(!data[num].val&&bel[e[i].x]!=bel[e[i].y]) e[i].f=1,++ans;++num;
}sort(e+1,e+m+1,cmp);printf("%d\n",ans);
for(int i=1;i<=ans;++i) printf("%d %d\n",e[i].x,e[i].y);
return 0;
}