是bzoj1061的加强版。大概这样就只能单纯性求解线性规划了吧。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define eps 1e-7
#define N 1010
#define M 10010
#define inf 0x3f3f3f3f
inline char gc(){
static char buf[1<<16],*S,*T;
if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
return x*f;
}
int n,m;
double a[M][N];
inline void pivot(int l,int e){
double t=a[l][e];a[l][e]=1;
for(int i=0;i<=n;++i) a[l][i]/=t;
for(int i=0;i<=m;++i){
if(i==l||abs(a[i][e])<eps) continue;
t=a[i][e];a[i][e]=0;
for(int j=0;j<=n;++j) a[i][j]-=a[l][j]*t;
}
}
inline bool simplex(){
while(1){
int l=0,e=0;double mn=inf;
for(int j=1;j<=n;++j) if(a[0][j]>eps){e=j;break;}
if(!e) return 1;
for(int i=1;i<=m;++i)
if(a[i][e]>eps&&a[i][0]/a[i][e]<mn) mn=a[i][0]/a[i][e],l=i;
if(!l) return 0;pivot(l,e);
}
}
int main(){
// freopen("a.in","r",stdin);
n=read();m=read();
for(int i=1;i<=n;++i) a[0][i]=read();
for(int i=1;i<=m;++i){
int k=read();
while(k--){
int x=read(),y=read();
for(int j=x;j<=y;++j) a[i][j]=1;
}a[i][0]=read();
}simplex();
printf("%d\n",-(int)a[0][0]);
return 0;
}