求多个串的最长公共子串。
首先用第一个串建出SAM。
然后用每一个串去SAM去上跑,得到匹配到每个节点的最长长度。
这个怎么得到呢?设我们现在匹配到了节点p,长度为len,下一个字符为x,则
1)son[p][x]存在,则p=son[p][x],++len
2)son[p][x]不存在,在par树上一直往上跳,直到存在son[p][x],len=mx[p]+1,p=son[p][x]。如果不存在这样的p,p=rt,len=0.
然后如果节点p最长可以往前匹配len,则par树上p的祖先都可以往前匹配len,我们需要从底向上更新一次。
每个节点对每个串的最长匹配长度取min,然后答案就是所有节点中最大的那个。
par树的一些性质:p的父亲节点代表的串是p节点代表的串的最长后缀。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 20010
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int nn,n=0,m,son[N][26],mx[N],par[N],ans[N],rt,last,cnt[N],a[N],res[N];
char s[N];
inline void ins(int ch){
int p=last,np=++n;last=np;mx[np]=mx[p]+1;ans[np]=mx[np];
for(;p&&!son[p][ch];p=par[p]) son[p][ch]=np;
if(!p){par[np]=rt;return;}
int q=son[p][ch];
if(mx[q]==mx[p]+1){par[np]=q;return;}
int nq=++n;mx[nq]=mx[p]+1;memcpy(son[nq],son[q],sizeof(son[q]));
par[nq]=par[q];par[q]=par[np]=nq;ans[nq]=mx[nq];
for(;p&&son[p][ch]==q;p=par[p]) son[p][ch]=nq;
}
inline void gao(){
scanf("%s",s+1);m=strlen(s+1);
memset(res,0,sizeof(res));int p=rt,len=0;
for(int i=1;i<=m;++i){
if(son[p][s[i]-'a']){p=son[p][s[i]-'a'];++len;res[p]=max(res[p],len);continue;}
while(p&&!son[p][s[i]-'a']) p=par[p];
if(!p) p=rt,len=0;
else len=mx[p]+1,p=son[p][s[i]-'a'],res[p]=max(res[p],len);
}for(int i=n;i>=1;--i){
p=a[i];ans[p]=min(ans[p],res[p]);
if(par[p]&&res[p]) res[par[p]]=mx[par[p]];
}
}
int main(){
// freopen("a.in","r",stdin);
nn=read();scanf("%s",s+1);m=strlen(s+1);last=rt=++n;
for(int i=1;i<=m;++i) ins(s[i]-'a');--nn;
for(int i=1;i<=n;++i) cnt[mx[i]]++;
for(int i=1;i<=m;++i) cnt[i]+=cnt[i-1];
for(int i=n;i>=1;--i) a[cnt[mx[i]]--]=i;
while(nn--) gao();int Ans=0;
for(int i=1;i<=n;++i) Ans=max(Ans,ans[i]);
printf("%d\n",Ans);
return 0;
}