bzoj1408 [Noi2002]Robot(欧拉函数+快速幂)

这题…因缺思厅啊qaq
就…就直接搞就好了。
因为欧拉函数是积性函数,第一问第二问互相搞一搞就好了。
第三问用总的减去第一问第二问的答案即可。
因为 d|nϕ(d)=n ,所以总的就是m-1(此题要求 ϕ(1)=0

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 10010
#define mod 10000
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,p[N],a[N],ans1,ans2,ans3,m=1;
inline int ksm(int x,int k){
    int res=1;for(;k;k>>=1,x=x*x%mod) if(k&1) res=res*x%mod;return res;
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();for(int i=1;i<=n;++i) p[i]=read(),a[i]=read();
    for(int i=1;i<=n;++i){
        m=(m*ksm(p[i],a[i]))%mod;
        if(p[i]==2) continue;
        int tmp1=ans2*(p[i]-1)%mod,tmp2=ans1*(p[i]-1)%mod;
        ans1=(ans1+tmp1)%mod;ans2=(ans2+tmp2+p[i]-1)%mod;
    }ans3=m-1-ans1-ans2;ans3=(ans3%mod+mod)%mod;
    printf("%d\n%d\n%d\n",ans1,ans2,ans3);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值