这题…因缺思厅啊qaq
就…就直接搞就好了。
因为欧拉函数是积性函数,第一问第二问互相搞一搞就好了。
第三问用总的减去第一问第二问的答案即可。
因为
∑d|nϕ(d)=n
,所以总的就是m-1(此题要求
ϕ(1)=0
)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 10010
#define mod 10000
inline char gc(){
static char buf[1<<16],*S,*T;
if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
return x*f;
}
int n,p[N],a[N],ans1,ans2,ans3,m=1;
inline int ksm(int x,int k){
int res=1;for(;k;k>>=1,x=x*x%mod) if(k&1) res=res*x%mod;return res;
}
int main(){
// freopen("a.in","r",stdin);
n=read();for(int i=1;i<=n;++i) p[i]=read(),a[i]=read();
for(int i=1;i<=n;++i){
m=(m*ksm(p[i],a[i]))%mod;
if(p[i]==2) continue;
int tmp1=ans2*(p[i]-1)%mod,tmp2=ans1*(p[i]-1)%mod;
ans1=(ans1+tmp1)%mod;ans2=(ans2+tmp2+p[i]-1)%mod;
}ans3=m-1-ans1-ans2;ans3=(ans3%mod+mod)%mod;
printf("%d\n%d\n%d\n",ans1,ans2,ans3);
return 0;
}