bzoj1194 [HNOI2006]潘多拉的盒子(自动机+bfs+tarjan+拓扑序dp)

我们枚举每一对自动机A,B,看A能识别的所有串能否被B全都识别。如果能就建边A->B.那么我们tarjan缩点+拓扑序dp求最长链即可。
考虑如何判断能否全都识别:bfs,同时扩展两个自动机,如果某一个串在A自动机走到了结束节点而B自动机不是结束节点,那么就不能全部识别。以A,B自动机分别匹配到了哪个节点为状态,不重复搜,复杂度就是 O(n2)
因此总的复杂度就是 O(S2n2)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <utility>
#include <stack>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 60
#define pa pair<int,int>
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,m,h[N],num=0,dfn[N],low[N],scc=0,bel[N],sz[N],dfnum=0,du[N],Q[N],f[N];
bool inq[N],vis[N][N];int ans=0;
struct edge{
    int fr,to,next;
}data[N*N];
inline void add(int x,int y){
    data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].fr=x;
}
struct AM{
    int n,son[N][2];bool ed[N];
    inline void init(){
        n=read();m=read();memset(ed,0,sizeof(ed));
        while(m--) ed[read()]=1;
        for(int i=0;i<n;++i) son[i][0]=read(),son[i][1]=read();
    }
}a[N];
inline bool jud(AM &A,AM &B){
    queue<pa>q;memset(vis,0,sizeof(vis));
    q.push(make_pair(0,0));vis[0][0]=1;
    while(!q.empty()){
        int x=q.front().first,y=q.front().second;q.pop();
        if(A.ed[x]&&!B.ed[y]) return 0;
        for(int i=0;i<2;++i){
            int xx=A.son[x][i],yy=B.son[y][i];
            if(!vis[xx][yy]) q.push(make_pair(xx,yy)),vis[xx][yy]=1;
        }
    }return 1;
}stack<int>qq;
inline void tarjan(int x){
    dfn[x]=low[x]=++dfnum;qq.push(x);inq[x]=1;
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;
        if(!dfn[y]) tarjan(y),low[x]=min(low[x],low[y]);
        else if(inq[y]) low[x]=min(low[x],dfn[y]);
    }if(low[x]==dfn[x]){
        ++scc;while(1){
            int y=qq.top();qq.pop();inq[y]=0;
            bel[y]=scc;sz[scc]++;if(y==x) break;
        }
    }
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();
    for(int i=1;i<=n;++i) a[i].init();
    for(int i=1;i<=n;++i)
        for(int j=1;j<=n;++j)
            if(i!=j&&jud(a[i],a[j])) add(i,j);
    for(int i=1;i<=n;++i) if(!dfn[i]) tarjan(i);
    int num1=num;num=0;memset(h,0,sizeof(h));
    for(int i=1;i<=num1;++i){
        int x=data[i].fr,y=data[i].to;
        if(bel[x]!=bel[y]) add(bel[x],bel[y]),du[bel[y]]++;
    }int qh=1,qt=0;
    for(int i=1;i<=scc;++i) if(!du[i]) Q[++qt]=i;
    while(qh<=qt){
        int x=Q[qh++];
        for(int i=h[x];i;i=data[i].next){
            int y=data[i].to;if(--du[y]==0) Q[++qt]=y;
        }
    }for(int i=scc;i>=1;--i){
        int x=Q[i];
        for(int i=h[x];i;i=data[i].next){
            int y=data[i].to;f[x]=max(f[x],f[y]);
        }f[x]+=sz[x];ans=max(ans,f[x]);
    }printf("%d\n",ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值