bzoj4237 稻草人(cdq分治+单调栈)

求所有点对i,j,满足以i点为左下角,j点为右上角的矩形不包含第三点。
我们cdq分治,先按x从小到大排序,然后每次我们处理左下角在l,mid中,右上角在mid+1,r中的点对个数。
我们把两部分点都分别按y升序排序。然后把他们归并起来,我们考虑左面的点必须得x坐标单降,右面的点必须x坐标单增。对于右面的每一个点,我们考虑能和他配对的左面的点为一定是y坐标在(右面这个点和他栈中前面的那个点的y坐标之间),二分查找一下即可。画画图理解一发就好了qaq
复杂度 O(nlog2n) O ( n l o g 2 n )

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 200010
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,sl[N],ltop,sr[N],rtop;
ll ans=0;
struct P{
    int x,y;
}p[N],tmp[N];
inline bool cmp(P a,P b){return a.x<b.x;}
inline void pushl(int id){//左边维护x递减单调栈
    while(ltop&&p[id].x>p[sl[ltop]].x) --ltop;
    sl[++ltop]=id;
}
inline void pushr(int id){//右边维护x单增单调栈
    while(rtop&&p[id].x<p[sr[rtop]].x) --rtop;
    sr[++rtop]=id;
}
inline bool cmp1(int a,int b){return p[a].y<p[b].y;}
inline void cdq(int l,int r){
    if(l>=r) return;int mid=l+r>>1;
    cdq(l,mid);cdq(mid+1,r);
    int p1=l,p2=mid+1,now=l;ltop=rtop=0;
    while(p1<=mid&&p2<=r){
        if(p[p1].y<p[p2].y){tmp[now++]=p[p1],pushl(p1);++p1;continue;}
        tmp[now++]=p[p2],pushr(p2);++p2;
        ans+=ltop-(lower_bound(sl+1,sl+ltop+1,sr[rtop-1],cmp1)-sl)+1;
    }while(p1<=mid) tmp[now++]=p[p1],++p1;
    while(p2<=r) tmp[now++]=p[p2],pushr(p2),++p2,
    ans+=ltop-(lower_bound(sl+1,sl+ltop+1,sr[rtop-1],cmp1)-sl)+1;
    memcpy(p+l,tmp+l,sizeof(p[0])*(r-l+1));
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();
    for(int i=1;i<=n;++i) p[i].x=read(),p[i].y=read();
    sort(p+1,p+n+1,cmp);cdq(1,n);
    printf("%lld\n",ans);
    return 0;
}
好的,这是一道经典的单调栈问题。题目描述如下: 有 $n$ 个湖,第 $i$ 个湖有一个高度 $h_i$。现在要在这些湖之间挖一些沟渠,使得相邻的湖之间的高度差不超过 $d$。请问最少需要挖多少个沟渠。 这是一道单调栈的典型应用题。我们可以从左到右遍历湖的高度,同时使用一个单调栈来维护之前所有湖的高度。具体来说,我们维护一个单调递增的栈,栈中存储的是湖的下标。假设当前遍历到第 $i$ 个湖,我们需要在之前的湖中找到一个高度最接近 $h_i$ 且高度不超过 $h_i-d$ 的湖,然后从这个湖到第 $i$ 个湖之间挖一条沟渠。具体的实现可以参考下面的代码: ```c++ #include <cstdio> #include <stack> using namespace std; const int N = 100010; int n, d; int h[N]; stack<int> stk; int main() { scanf("%d%d", &n, &d); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); int ans = 0; for (int i = 1; i <= n; i++) { while (!stk.empty() && h[stk.top()] <= h[i] - d) stk.pop(); if (!stk.empty()) ans++; stk.push(i); } printf("%d\n", ans); return 0; } ``` 这里的关键在于,当我们遍历到第 $i$ 个湖时,所有比 $h_i-d$ 小的湖都可以被舍弃,因为它们不可能成为第 $i$ 个湖的前驱。因此,我们可以不断地从栈顶弹出比 $h_i-d$ 小的湖,直到栈顶的湖高度大于 $h_i-d$,然后将 $i$ 入栈。这样,栈中存储的就是当前 $h_i$ 左边所有高度不超过 $h_i-d$ 的湖,栈顶元素就是最靠近 $h_i$ 且高度不超过 $h_i-d$ 的湖。如果栈不为空,说明找到了一个前驱湖,答案加一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值