bzoj2466 [中山市选2009]树(树形dp)

第一眼Gauss解异或方程组+爆搜自由元。
在网上发现了另一种很优秀的 O(n) O ( n ) 树形dp orz gxz CQzhangyu
f–嗯x,g–不嗯x 1–开着 0–关着
如果嗯x,要求儿子y一定要是0
如果不摁x,要求儿子y一定要是1
再枚举儿子摁没摁来转移即可。

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 110
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(T==S){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,f[N][2],g[N][2],h[N],num=0;//f[x][1],x点摁开关之后亮着,0--关着 g--不摁开关
struct edge{
    int to,next;
}data[N<<1];
void dfs(int x,int Fa){
    f[x][1]=1;f[x][0]=n+1;g[x][0]=0;g[x][1]=n+1;
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;if(y==Fa) continue;
        dfs(y,x);int f0=f[x][0],f1=f[x][1],g0=g[x][0],g1=g[x][1];
        f[x][0]=min(f1+f[y][0],f0+g[y][0]);
        f[x][1]=min(f0+f[y][0],f1+g[y][0]);
        g[x][0]=min(g1+f[y][1],g0+g[y][1]);
        g[x][1]=min(g0+f[y][1],g1+g[y][1]);
    }
}
int main(){
//  freopen("a.in","r",stdin);
    while(1){
        n=read();if(!n) break;memset(h,0,sizeof(h));num=0;
        for(int i=1;i<n;++i){
            int x=read(),y=read();
            data[++num].to=y;data[num].next=h[x];h[x]=num;
            data[++num].to=x;data[num].next=h[y];h[y]=num;
        }dfs(1,0);printf("%d\n",min(f[1][1],g[1][1]));
    }return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值