bzoj5288 [Hnoi2018]游戏(模拟+拓扑排序)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Icefox_zhx/article/details/80645737

我们首先考虑把没有门隔开的点缩成一个点。

如果i->i+1的钥匙<=i,那么从i+1一定走不到i及其左,因此先做i+1,也就是连边i+1->i,然后按拓扑序来做,

如果i->i+1的钥匙>=i+1,那么从i一定走不到i+1及其右,因此先做i,也就是连边i->i+1.
每次类似区间合并去扩展,每个区间只会被最多合并两次,因此复杂度是O(n)的。

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 1000010
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,m,Q,bel[N],key[N],l[N],r[N],L[N],R[N],tot=0,h[N],num=0,du[N];
bool mk[N];
struct edge{
    int to,next;
}data[N];
inline void add(int x,int y){
    data[++num].to=y;data[num].next=h[x];h[x]=num;du[y]++;
}
queue<int>q;
int main(){
//  freopen("game3.in","r",stdin);
//  freopen("a.out","w",stdout);
    n=read();m=read();Q=read();
    while(m--){
        int x=read(),y=read();mk[x]=1;key[x]=y;
    }++tot;
    for(int i=1;i<=n;++i){
        bel[i]=tot;if(!mk[i]) continue;
        r[tot]=i;++tot;
    }r[tot]=n;
    for(int i=1;i<tot;++i){
        key[i]=bel[key[r[i]]];
        if(key[i]<=i) add(i+1,i);
        else add(i,i+1);
    }key[tot]=tot+1;for(int i=1;i<=tot;++i) if(!du[i]) q.push(i);
    while(!q.empty()){
        int x=q.front();q.pop();
        for(int i=h[x];i;i=data[i].next){
            int y=data[i].to;if(--du[y]==0) q.push(y);
        }L[x]=R[x]=x;
        while(1){
            if(key[R[x]]>=L[x]&&key[R[x]]<=R[x]){R[x]=R[R[x]+1];continue;}
            if(key[L[x]-1]>=L[x]&&key[L[x]-1]<=R[x]){L[x]=L[L[x]-1];continue;}
            break;
        }
    }while(Q--){
        int x=bel[read()],y=bel[read()];
        puts(y>=L[x]&&y<=R[x]?"YES":"NO");
    }return 0;
}
展开阅读全文

没有更多推荐了,返回首页