bzoj4712 洪水(树形动态dp,树链剖分+线段树二分/链分治)

首先考虑不带修改的话,f[x]表示切断x与子树内的叶子的最小花费,有
f[x]=min(v[x],s[x]),s[x]=yson[x]f[y] f [ x ] = m i n ( v [ x ] , s [ x ] ) , s [ x ] = ∑ y ∈ s o n [ x ] f [ y ]
考虑把点x的权值增加val的影响,首先v[x]+=val,f[x]可能会变大/不变。
如果f[x]不变的话,那么就没有其他影响了,结束。
否则记f[x]的增量为del,对于fa[x]到根的路径上的一段点的s[i]都会增加del。
直到什么时候呢?直到出现 v[i]s[i]<del v [ i ] − s [ i ] < d e l ,此时有两种情况:
1、 v[i]<=s[i] v [ i ] <= s [ i ] ,原来f[i]就是v[i],现在增大了s[i],并不会改变f[i],因此对上面的点不再有影响,结束。
2、 v[i]>s[i] v [ i ] > s [ i ] ,原来 f[i]=s[i] f [ i ] = s [ i ] ,
现在 f[i]=v[i](s[i]+del>v[i]) f [ i ] = v [ i ] ( 因 为 s [ i ] + d e l > v [ i ] ) ,所以再往上的点的s增量变成了v[i]-s[i]。
重复执行此操作直到增量为0或过了根。
好的现在我们就需要快速求出x到根的路径上的第一个 v[i]s[i]<del v [ i ] − s [ i ] < d e l 的点和支持路径加操作。我们可以用树链剖分,在线段树上维护区间v[i]-s[i]的最小值,每次在线段树上爬即可。线段树也可以很好的支持区间加操作

考虑一个点要重新计算DP值,当且仅当 s[x]<v[x] s [ x ] < v [ x ] ,并且一旦 s[x]>v[x] s [ x ] > v [ x ] ,在下次修改这个点的v[x]之前DP值将一直是v[x]。

因此每个点一开始会贡献一个可能的重新计算次数,每次修改也会最多贡献一个,所以总的复杂度就是 O((n+m)log2n) O ( ( n + m ) l o g 2 n )

于是我们就做完了。

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 200010
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
inline char get_S(){
    char ch=gc();while(ch!='C'&&ch!='Q') ch=gc();return ch;
}
int n,m,h[N],num=0,dfn[N],dfnum=0,son[N],sz[N],tp[N],fa[N],dep[N],tid[N];
ll v[N],s[N],f[N];
struct edge{
    int to,next;
}data[N<<1];
struct node{
    ll mn,tag;
}tr[N<<2];
inline void dfs1(int x){
    sz[x]=1;son[x]=0;s[x]=0;
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;if(y==fa[x]) continue;
        fa[y]=x;dep[y]=dep[x]+1;dfs1(y);sz[x]+=sz[y];
        if(sz[y]>sz[son[x]]) son[x]=y;s[x]+=f[y];
    }if(sz[x]==1) s[x]=inf;f[x]=min(v[x],s[x]);
}
inline void dfs2(int x,int top){
    tp[x]=top;dfn[x]=++dfnum;tid[dfnum]=x;
    if(son[x]) dfs2(son[x],top);
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;if(y!=son[x]&&y!=fa[x]) dfs2(y,y);
    }
}
inline void pushup(int p){
    tr[p].mn=min(tr[p<<1].mn,tr[p<<1|1].mn);
}
inline void doadd(int p,ll val){
    tr[p].tag+=val;tr[p].mn+=val;
}
inline void pushdown(int p){
    if(!tr[p].tag) return;
    doadd(p<<1,tr[p].tag);doadd(p<<1|1,tr[p].tag);tr[p].tag=0;
}
inline void build(int p,int l,int r){
    if(l==r){tr[p].mn=v[tid[l]]-s[tid[l]];return;}
    int mid=l+r>>1;build(p<<1,l,mid);build(p<<1|1,mid+1,r);pushup(p);
}
inline ll ask(int p,int l,int r,int x){
    if(l==r) return tr[p].mn;
    int mid=l+r>>1;pushdown(p);
    if(x<=mid) return ask(p<<1,l,mid,x);
    return ask(p<<1|1,mid+1,r,x);
}
inline void add(int p,int l,int r,int x,ll val){
    if(l==r){tr[p].mn+=val;return;}
    int mid=l+r>>1;pushdown(p);
    if(x<=mid) add(p<<1,l,mid,x,val);
    else add(p<<1|1,mid+1,r,x,val);pushup(p);
}
inline int change(int p,int l,int r,int x,int y,ll val){
    if(x==l&&r==y){
        if(tr[p].mn>=val){doadd(p,-val);return 0;}
        if(l==r){doadd(p,-val);return tid[l];}
        int mid=l+r>>1;pushdown(p);
        int res=change(p<<1|1,mid+1,r,mid+1,y,val);
        if(!res) res=change(p<<1,l,mid,x,mid,val);pushup(p);return res;
    }int mid=l+r>>1;pushdown(p);
    if(y<=mid){
        int res=change(p<<1,l,mid,x,y,val);pushup(p);return res;
    }if(x>mid){
        int res=change(p<<1|1,mid+1,r,x,y,val);pushup(p);return res;
    }int res=change(p<<1|1,mid+1,r,mid+1,y,val);
    if(!res) res=change(p<<1,l,mid,x,mid,val);pushup(p);return res;
}
inline ll cals(int x){
    return v[x]-ask(1,1,n,dfn[x]);
}
inline void gao(int x,ll val){
    if(!x||!val) return;
    int y=change(1,1,n,dfn[tp[x]],dfn[x],val);
    if(!y){gao(fa[tp[x]],val);return;}
    ll sy=cals(y)-val;if(v[y]<=sy) return;
    gao(fa[y],v[y]-sy);
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();
    for(int i=1;i<=n;++i) v[i]=read();
    for(int i=1;i<n;++i){
        int x=read(),y=read();
        data[++num].to=y;data[num].next=h[x];h[x]=num;
        data[++num].to=x;data[num].next=h[y];h[y]=num;
    }dfs1(1);dfs2(1,1);build(1,1,n);m=read();
    while(m--){
        char op=get_S();int x=read();
        if(op=='Q'){printf("%lld\n",min(cals(x),v[x]));continue;}
        ll y=read(),sx=cals(x);
        add(1,1,n,dfn[x],y);v[x]+=y;
        if(v[x]-y>=sx) continue;
        gao(fa[x],min(sx,v[x])-(v[x]-y));
    }return 0;
}

immortalCO在他的论文中加强了此题,n<=1e6,把增加一个点的权值变成了改变一个点的权值。
这样就没有了点权不降的性质,上面那种基于决策点变动的均摊算法也就无法再适用了。
不过我们有更优秀的做法!记这回的s[x]表示所有轻儿子y的f[y]之和。我们考虑一条重链,把点从链顶向链底标号,那么
f[x]=min(v[x],s[x]+f[x+1]) f [ x ] = m i n ( v [ x ] , s [ x ] + f [ x + 1 ] ) ,特殊的对于链底m, f[m]=min(v[m],s[m]) f [ m ] = m i n ( v [ m ] , s [ m ] )
我们可以把这个转移写成矩阵的形式:

(s[i] infa[i]0)×(f[i+1] 0)=(f[i] 0) ( s [ i ] a [ i ]   − i n f 0 ) × ( f [ i + 1 ]   0 ) = ( f [ i ]   0 )

重定义加法为取min,乘法为加。
这样就可以线段树分治,每个点一个转移矩阵即可。
每次修改点x首先修改x的矩阵,然后算出新的f[tp[x]]与原来的差值,用来更新fa[tp[x]]的s。一直更新到跟即可。
询问f[x]的时候,我们直接用(0,0)左乘x所在重链的后缀矩阵乘积即可。
这样对每条重链建一棵线段树比较方便x
初始化 O(n) O ( n ) ,修改 O(log2n) O ( l o g 2 n ) ,查询 O(logn) O ( l o g n )
不过写成矩阵这样来合并的话,估计常数巨大。可以发现矩阵第二行基本没啥用,直接维护第一行的两个数即可。

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 200010
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
inline char get_S(){
    char ch=gc();while(ch!='C'&&ch!='Q') ch=gc();return ch;
}
int n,m,h[N],num=0,son[N],sz[N],tp[N],fa[N],dep[N],tid[N],a[N],rt[N],bot[N],owo=0;
ll v[N],s[N],f[N];
stack<int>qq;
struct edge{
    int to,next;
}data[N<<1];
struct node{
    ll a,b;int ls,rs;
    inline ll calc(){return min(a,b);}
    friend node operator+(const node &a,const node &b){
        node res;res.b=a.b+b.b;res.a=min(a.a,a.b+b.a);return res;
    }
}tr[N<<1];
inline void pushup(int p){
    tr[p].b=tr[tr[p].ls].b+tr[tr[p].rs].b;
    tr[p].a=min(tr[tr[p].ls].a,tr[tr[p].ls].b+tr[tr[p].rs].a);
}
inline void build(int &p,int l,int r){
    p=++owo;if(l==r){tr[p].a=v[a[l]];tr[p].b=s[a[l]];return;}
    int mid=l+r>>1;build(tr[p].ls,l,mid);build(tr[p].rs,mid+1,r);pushup(p);
}
inline void solve(int x){//对每条链建一棵线段树,常数优化qaq
    int tot=0;
    while(1){
        int y=qq.top();qq.pop();a[++tot]=y;
        if(y==x) break;
    }for(int i=1,j=tot;i<j;++i,--j) swap(a[i],a[j]);
    build(rt[x],1,tot);for(int i=1;i<=tot;++i) tid[a[i]]=i;
}
inline void dfs1(int x){
    sz[x]=1;son[x]=0;
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;if(y==fa[x]) continue;
        fa[y]=x;dep[y]=dep[x]+1;dfs1(y);sz[x]+=sz[y];
        if(sz[y]>sz[son[x]]) son[x]=y;
    }
}
inline void dfs2(int x,int top){
    tp[x]=top;s[x]=0;qq.push(x);
    if(son[x]) dfs2(son[x],top);else bot[top]=x;
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;if(y==son[x]||y==fa[x]) continue;
        dfs2(y,y),s[x]+=f[y];solve(y);
    }if(sz[x]==1) s[x]=inf;f[x]=min(v[x],s[x]+f[son[x]]);
}
inline node ask(int p,int l,int r,int x,int y){
    if(x<=l&&r<=y) return tr[p];
    int mid=l+r>>1;
    if(y<=mid) return ask(tr[p].ls,l,mid,x,y);
    if(x>mid) return ask(tr[p].rs,mid+1,r,x,y);
    return ask(tr[p].ls,l,mid,x,mid)+ask(tr[p].rs,mid+1,r,mid+1,y);
}
inline void adda(int p,int l,int r,int x,ll val){
    if(l==r){tr[p].a+=val;return;}
    int mid=l+r>>1;
    if(x<=mid) adda(tr[p].ls,l,mid,x,val);
    else adda(tr[p].rs,mid+1,r,x,val);pushup(p);
}
inline void addb(int p,int l,int r,int x,ll val){
    if(l==r){tr[p].b+=val;return;}
    int mid=l+r>>1;
    if(x<=mid) addb(tr[p].ls,l,mid,x,val);
    else addb(tr[p].rs,mid+1,r,x,val);pushup(p);
}
inline void gao(int x,ll val){
    if(!val||!x) return;
    ll tmp=tr[rt[tp[x]]].calc();
    addb(rt[tp[x]],1,tid[bot[tp[x]]],tid[x],val);
    gao(fa[tp[x]],tr[rt[tp[x]]].calc()-tmp);
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();
    for(int i=1;i<=n;++i) v[i]=read();
    for(int i=1;i<n;++i){
        int x=read(),y=read();
        data[++num].to=y;data[num].next=h[x];h[x]=num;
        data[++num].to=x;data[num].next=h[y];h[y]=num;
    }dfs1(1);dfs2(1,1);solve(1);m=read();
    while(m--){
        char op=get_S();int x=read();
        if(op=='Q'){printf("%lld\n",ask(rt[tp[x]],1,tid[bot[tp[x]]],tid[x],tid[bot[tp[x]]]).calc());continue;}
        ll y=read(),tmp=tr[rt[tp[x]]].calc();adda(rt[tp[x]],1,tid[bot[tp[x]]],tid[x],y);
        gao(fa[tp[x]],tr[rt[tp[x]]].calc()-tmp);
    }return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值