bzoj1563 [NOI2009]诗人小G(dp+决策单调性+二分)

304 篇文章 2 订阅
32 篇文章 0 订阅

首先有很显然的 O(n2) O ( n 2 ) dp
f[i]=min{f[j]+|s[i]s[j]+ij1L|p} f [ i ] = m i n { f [ j ] + | s [ i ] − s [ j ] + i − j − 1 − L | p }
30分。
然后考虑p=2的,化一下式子可以发现是个斜率优化。
20分。
考虑4,5两个L非常小的点,可以贪心,每行如果放了不止一个句子,长度还大于了2L,那么一定不优,因此可以限制每行的长度,复杂度 O(NL) O ( N L )
20分。

通过算法二的斜率优化,我们猜想这个dp也是有决策单调性的。
(要不怎么做呢对吧qaq)
于是我们可以单调队列+二分维护最优决策区间即可。
复杂度 O(nlogn) O ( n l o g n )

当然我们还是有大神证明了四边形不等式的:portal

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 1e18
#define N 100010
#define ld long double
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,L,p,s[N],path[N];
ld f[N];
char a[N][35];
struct Icefox{
    int l,r,id;
    Icefox(int _l=0,int _r=0,int _id=0){l=_l;r=_r;id=_id;}
}q[N];
inline ld ksm(ld x,int k){
    if(x<0) x=-x;ld res=1;for(;k;k>>=1,x=x*x) if(k&1) res=res*x;return res;
}
inline ld calc(int i,int j){
    return f[j]+ksm(s[i]-s[j]+i-j-1-L,p);
}
inline int ask(int l,int r,int k1,int k2){
    while(l<=r){
        int mid=l+r>>1;
        if(calc(mid,k1)<=calc(mid,k2)) l=mid+1;
        else r=mid-1;
    }return l-1;
}
inline void print(int x){
    if(path[x]) print(path[x]);
    for(int i=path[x]+1;i<=x;++i){
        for(int j=1;a[i][j];++j) putchar(a[i][j]);
        putchar(i==x?'\n':' ');
    }
}
int main(){
//  freopen("a.in","r",stdin);
    int tst=read();
    while(tst--){
        n=read();L=read();p=read();
        for(int i=1;i<=n;++i) scanf("%s",a[i]+1),s[i]=s[i-1]+strlen(a[i]+1);
        int qh=1,qt=0;q[++qt]=Icefox(1,n,0);
        for(int i=1;i<=n;++i){
            if(qh<=qt&&q[qh].r<i) ++qh;
            if(qh<=qt) ++q[qh].l;
            f[i]=calc(i,q[qh].id);path[i]=q[qh].id;
            if(qh>qt||calc(n,i)<calc(n,q[qt].id)){
                while(qh<=qt&&calc(q[qt].l,i)<=calc(q[qt].l,q[qt].id)) --qt;
                if(qh<=qt){
                    int t=ask(q[qt].l,q[qt].r,q[qt].id,i);
                    q[qt].r=t;q[++qt]=Icefox(t+1,n,i);
                }else q[++qt]=Icefox(i+1,n,i);
            }
        }
        if(f[n]>inf) puts("Too hard to arrange");
        else printf("%lld\n",(ll)f[n]);//print(n);
        puts("--------------------");
    }return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值