bzoj4558 [JLoi2016]方(容斥原理,计数,Hash)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Icefox_zhx/article/details/81038916

这容斥真是写的我心态爆炸…
考虑用至少0个坏点的-至少1个坏点的+至少两个坏点的-至少三个坏点的+至少四个坏点的。
我们发现对于斜着的正方形,可以直接在框住它的大正方形处计数,边长为i的大正方形内就有i个正方形。
且我们发现每个点出现且仅出现在一个正方形上。因此对于至少一个坏点的正方形,我们只需要统计过一个坏点的正方形框架个数即可。然后就是毒瘤的分类讨论!

至少两个三个四个的可以通过枚举两个坏点,算出另外两点的可能坐标,Hash来判断。

还要注意去重。
复杂度O(n+k2)

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 1000003
#define mod 100000007
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(T==S){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline ll read(){
    ll x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,m,K,ans0,ans1,ans2,ans3,ans4,h[N],num=0;
inline void inc(int &x,int y){x+=y;if(x>=mod) x-=mod;}
struct P{
    int x,y;
}a[2010];
struct Hash_table{
    ll key;int next;
}data[2010];
inline void ins(ll key){
    int x=key%N;
    for(int i=h[x];i;i=data[i].next)
        if(data[i].key==key) return;
    data[++num].key=key;data[num].next=h[x];h[x]=num;
}
inline bool hs(ll key){
    int x=key%N;
    for(int i=h[x];i;i=data[i].next)
        if(data[i].key==key) return 1;return 0;
}
inline int cal(int l1,int l2,int h){
    h--;if(l1>l2) swap(l1,l2);
    if(h<=l1) return (ll)h*(h+1)/2%mod;
    if(h<=l2) return ((ll)l1*(l1+1)/2+(ll)l1*(h-l1))%mod;
    if(h>=l1+l2) return (ll)l1*l2%mod;
    return ((ll)l1*(l1+1)/2+(ll)l1*(l2-l1)+(ll)(l1-1+l1-h+l2)*(h-l2)/2)%mod;
}
inline void check(int x1,int y1,int x2,int y2){
    if(x1<0||x1>n||x2<0||x2>n||y1<0||y1>m||y2<0||y2>m) return;
    int res=hs((ll)x1*(m+1)+y1)+hs((ll)x2*(m+1)+y2);
    ans2++;ans3+=res;ans4+=res==2;
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();m=read();K=read();
    for(int i=1;i<=min(n,m);++i) inc(ans0,(ll)i*(n-i+1)*(m-i+1)%mod);
    for(int i=1;i<=K;++i){
        a[i].x=read(),a[i].y=read();ins((ll)a[i].x*(m+1)+a[i].y);
        inc(ans1,min(a[i].x,a[i].y)+min(a[i].x,m-a[i].y)+min(n-a[i].x,a[i].y)+min(n-a[i].x,m-a[i].y));
        inc(ans1,cal(a[i].x,n-a[i].x,a[i].y));
        inc(ans1,cal(a[i].x,n-a[i].x,m-a[i].y));
        inc(ans1,cal(a[i].y,m-a[i].y,a[i].x));
        inc(ans1,cal(a[i].y,m-a[i].y,n-a[i].x));
    }for(int i=1;i<=K;++i)
        for(int j=i+1;j<=K;++j){
            int x1=a[i].x,y1=a[i].y,x2=a[j].x,y2=a[j].y;
            check(x1+y2-y1,y1+x1-x2,x2+y2-y1,y2+x1-x2);
            check(x1+y1-y2,y1+x2-x1,x2+y1-y2,y2+x2-x1);
            if((x1+x2+y1+y2)&1) continue;
            check(x1+x2+y2-y1>>1,y1+y2+x1-x2>>1,x1+x2+y1-y2>>1,y1+y2+x2-x1>>1);
        }printf("%d\n",((ans0-ans1+ans2-ans3/3+ans4/6)%mod+mod)%mod);
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页