134. 加油站
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1: 输入:
- gas = [1,2,3,4,5]
- cost = [3,4,5,1,2]
输出: 3 解释:
- 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
- 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
- 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
- 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
- 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
- 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
- 因此,3 可为起始索引。
直接从全局进行贪心选择,情况如下:
-
情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的
-
情况二:rest[i] = gas[i]-cost[i]为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。
-
情况三:如果累加的最小值是负数,汽车就要从非0节点出发,从后向前,看哪个节点能把这个负数填平,能把这个负数填平的节点就是出发节点。
// 解法1
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int sum = 0;
int min = 0;
for (int i = 0; i < gas.length; i++) {
sum += (gas[i] - cost[i]);
min = Math.min(sum, min);
}
if (sum < 0) return -1;
if (min >= 0) return 0;
for (int i = gas.length - 1; i > 0; i--) {
min += (gas[i] - cost[i]);
if (min >= 0) return i;
}
return -1;
}
}
135. 分发糖果
老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
- 每个孩子至少分配到 1 个糖果。
- 相邻的孩子中,评分高的孩子必须获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?
示例 1:
- 输入: [1,0,2]
- 输出: 5
- 解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。
比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼。
先确定右边评分大于左边的情况(也就是从前向后遍历)
此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果
局部最优可以推出全局最优。
如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1
再确定左孩子大于右孩子的情况(从后向前遍历)
遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?
因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。
如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了
所以确定左孩子大于右孩子的情况一定要从后向前遍历
如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。
那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。
局部最优可以推出全局最优。
所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。
class Solution {
/**
分两个阶段
1、起点下标1 从左往右,只要 右边 比 左边 大,右边的糖果=左边 + 1
2、起点下标 ratings.length - 2 从右往左, 只要左边 比 右边 大,此时 左边的糖果应该 取本身的糖果数(符合比它左边大) 和 右边糖果数 + 1 二者的最大值,这样才符合 它比它左边的大,也比它右边大
*/
public int candy(int[] ratings) {
int len = ratings.length;
int[] candyVec = new int[len];
candyVec[0] = 1;
for (int i = 1; i < len; i++) {
candyVec[i] = (ratings[i] > ratings[i - 1]) ? candyVec[i - 1] + 1 : 1;
}
for (int i = len - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1]) {
candyVec[i] = Math.max(candyVec[i], candyVec[i + 1] + 1);
}
}
int ans = 0;
for (int num : candyVec) {
ans += num;
}
return ans;
}
}
860.柠檬水找零
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。
顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
示例 1:
- 输入:[5,5,5,10,20]
- 输出:true
- 解释:
- 前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
- 第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
- 第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
- 由于所有客户都得到了正确的找零,所以我们输出 true。
有如下三种情况:
- 情况一:账单是5,直接收下。
- 情况二:账单是10,消耗一个5,增加一个10
- 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5
因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能
所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。
class Solution {
public boolean lemonadeChange(int[] bills) {
int five = 0;
int ten = 0;
for (int i = 0; i < bills.length; i++) {
if (bills[i] == 5) {
five++;
} else if (bills[i] == 10) {
five--;
ten++;
} else if (bills[i] == 20) {
if (ten > 0) {
ten--;
five--;
} else {
five -= 3;
}
}
if (five < 0 || ten < 0) return false;
}
return true;
}
}
406.根据身高重建队列
假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
示例 1:
- 输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
- 输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
- 解释:
- 编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
- 编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
- 编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
- 编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
- 编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
- 因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。
前面的节点一定都比本节点高,只需要按照k为下标重新插入队列就可以了
按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。
所以在按照身高从大到小排序后:
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
class Solution {
public int[][] reconstructQueue(int[][] people) {
// 身高从大到小排(身高相同k小的站前面)
Arrays.sort(people, (a, b) -> {
if (a[0] == b[0]) return a[1] - b[1]; // a - b 是升序排列,故在a[0] == b[0]的狀況下,會根據k值升序排列
return b[0] - a[0]; //b - a 是降序排列,在a[0] != b[0],的狀況會根據h值降序排列
});
LinkedList<int[]> que = new LinkedList<>();
for (int[] p : people) {
que.add(p[1],p); //Linkedlist.add(index, value),會將value插入到指定index裡。
}
return que.toArray(new int[people.length][]);
}
}