计算机视觉是人工智能领域的重要分支,其在图像识别、目标检测和图像分割等任务中发挥着重要作用。目标检测是计算机视觉中的一个关键任务,而YOLOv5作为目标检测领域的先进方法,近年来备受关注。在YOLOv5的改进系列中,我们将探讨如何将MobileNetV3作为YOLOv5的主干网络。
MobileNetV3是Google在2019年提出的轻量级卷积神经网络架构,其旨在实现更高的性能和更低的计算复杂度。MobileNetV3通过引入一系列创新的模块和技术,提供了一种高效的解决方案,适用于移动设备和嵌入式系统。
为了实现YOLOv5和MobileNetV3的结合,我们需要修改YOLOv5的代码,以将MobileNetV3作为主干网络。下面是一个示例代码,展示了如何在YOLOv5中使用MobileNetV3。
import torch
import torch.nn as nn
from torchvision.models impo