YOLOv7改进之实验结果展示:新增F Score打印功能

本文介绍了YOLOv7针对YOLOv5的改进,尤其是在目标检测性能上的提升。通过新增F Score打印功能,研究人员能更全面地评估模型的精确率和召回率,以衡量模型性能。提供的源代码示例展示了如何在实验中获取并打印F Score,以丰富评估数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言:
YOLOv5系列模型在计算机视觉领域取得了显著的进展,但是在进行模型对比实验时,获取更多的精度数据对于研究人员和开发者来说是至关重要的。为了丰富实验数据,我们对YOLOv7进行改进,新增了F Score的打印功能。本文将详细介绍YOLOv7的改进内容,并提供相应的源代码示例。

YOLOv7改进:
YOLOv7是对YOLOv5的改进版本,旨在进一步提升目标检测的性能。我们在YOLOv7中新增了F Score的打印功能,以便更全面地评估模型的准确性。F Score是一种常用的评价指标,综合考虑了目标检测模型的精确率和召回率,可以更好地衡量模型的性能。

F Score的计算方法如下:

def calculate_f_score(tp, fp, fn):
    precision = tp / (tp + fp)
    recall = tp / (tp + fn)
    f_score = 2 * (precision * recall) / (precision + recall)
    return f_score

其中,tp表示真阳性(即正确检测到的正样本数),fp表示假阳性(即错误检测到的正样本数),fn表示假阴性(即未检测到的正样本数)。

源代码示例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值