学习打卡第九天

学习打卡第九天
还是贪心算法
有一个整数序列,它的每个数各不相同,我们不知道它的长度是多少(即整数个数),但我们知道在某些区间中间至少有多少个整数,用区间(Li,Ri,Ci)来描述,表示这个整数序列中至少有Ci个数来自区间[Li,Ri],给出若干个这样的区间,问这个整数序列的长度最少能为多少?

输入格式
第一行一个整数N,表示区间个数;

接下来N行,每行三个整数(Li,Ri,Ci),描述一个区间。

【数据规模】

N<=1000,0<=Li<=Ri<=1000,1<=Ci<=Ri-Li+1

输出格式
仅一个数,表示该整数序列的最小长度。
原题链接:https://www.luogu.com.cn/problem/P1645

#include<bits/stdc++.h>
using namespace std;

struct node{
	int from,to,s;//from表示这个区间的前段点所在位置,to表示这个区间的后断点的位置,s是区间元素的上限 
}a[20000];
bool cmp(node x,node y)
{
	return x.to<y.to;//按右端点开始排序 
}
int sum=0,n,v[20000];//sum表示所选元素总数,也就是答案,v数组记录这个位置放没放元素 
int main()
{
	cin>>n;//读入 
	for(int i=1;i<=n;i++)cin>>a[i].from>>a[i].to>>a[i].s;//读入 
	sort(a+1,a+1+n,cmp);//简简单单排个序 
	for(int i=1;i<=n;i++)
	{
		int ans=0;//临时记录这个区间现在有多少个元素了 
		for(int j=a[i].from;j<=a[i].to;j++)if(v[j])ans++;//先全部扫一遍这个区间有多少个元素了 
		if(ans>=a[i].s)continue;//如果已经满足这个区间的约束,那么就不用再加了,开始看下一个区间 
		for(int j=a[i].to;j>=a[i].from;j--)//从右往左扫 
		{
			if(!v[j])//如果这个地方没有放,就放在这里 
			{
				ans++;//总个数加一 
				sum++;//当前区间的元素个数加一 
				v[j]=1;//有元素了,改变状态 
				if(ans==a[i].s)break;//每次加的时候都判断的时候就判断一下达到上限没有 
			}
		}
	}
	cout<<sum;//输出答案 
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值