学习打卡第九天
还是贪心算法
有一个整数序列,它的每个数各不相同,我们不知道它的长度是多少(即整数个数),但我们知道在某些区间中间至少有多少个整数,用区间(Li,Ri,Ci)来描述,表示这个整数序列中至少有Ci个数来自区间[Li,Ri],给出若干个这样的区间,问这个整数序列的长度最少能为多少?
输入格式
第一行一个整数N,表示区间个数;
接下来N行,每行三个整数(Li,Ri,Ci),描述一个区间。
【数据规模】
N<=1000,0<=Li<=Ri<=1000,1<=Ci<=Ri-Li+1
输出格式
仅一个数,表示该整数序列的最小长度。
原题链接:https://www.luogu.com.cn/problem/P1645
#include<bits/stdc++.h>
using namespace std;
struct node{
int from,to,s;//from表示这个区间的前段点所在位置,to表示这个区间的后断点的位置,s是区间元素的上限
}a[20000];
bool cmp(node x,node y)
{
return x.to<y.to;//按右端点开始排序
}
int sum=0,n,v[20000];//sum表示所选元素总数,也就是答案,v数组记录这个位置放没放元素
int main()
{
cin>>n;//读入
for(int i=1;i<=n;i++)cin>>a[i].from>>a[i].to>>a[i].s;//读入
sort(a+1,a+1+n,cmp);//简简单单排个序
for(int i=1;i<=n;i++)
{
int ans=0;//临时记录这个区间现在有多少个元素了
for(int j=a[i].from;j<=a[i].to;j++)if(v[j])ans++;//先全部扫一遍这个区间有多少个元素了
if(ans>=a[i].s)continue;//如果已经满足这个区间的约束,那么就不用再加了,开始看下一个区间
for(int j=a[i].to;j>=a[i].from;j--)//从右往左扫
{
if(!v[j])//如果这个地方没有放,就放在这里
{
ans++;//总个数加一
sum++;//当前区间的元素个数加一
v[j]=1;//有元素了,改变状态
if(ans==a[i].s)break;//每次加的时候都判断的时候就判断一下达到上限没有
}
}
}
cout<<sum;//输出答案
}