YOLOv5/v7/v8改进版:InceptionNeXt与ConvNeXt相遇——即插即用,提升小目标检测的必备改进

本文介绍了针对YOLOv5/v7/v8的改进版InceptionNeXt,通过结合Inception的多尺度特征表示和ConvNeXt的有效分组卷积,提高了小目标检测的准确性。关键代码展示了如何构建InceptionNeXt模块,并可直接应用于YOLOv5/v7/v8的检测网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测在计算机视觉领域扮演着重要的角色,而其中的小目标检测一直是一个具有挑战性的问题。为了解决这一问题并提高检测性能,研究人员提出了许多改进的算法。本文将介绍一种新的改进版本,称为YOLOv5/v7/v8的改进版InceptionNeXt,它将Inception和ConvNeXt系列相结合,具有即插即用的特点。

InceptionNeXt是在YOLOv5/v7/v8基础上进行的改进,旨在解决小目标检测中的困难。它采用了Inception和ConvNeXt两个经典的网络结构,并将它们融合在一起。Inception网络以其多尺度的特征表示而闻名,而ConvNeXt网络则通过有效地利用分组卷积来提高特征表达能力。通过结合这两种网络结构,InceptionNeXt能够更好地捕捉不同尺度的目标特征,并提高小目标检测的准确性。

下面是InceptionNeXt的关键代码实现:

import torch
import torch.nn as nn
import torch.nn<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值