目标检测在计算机视觉领域扮演着重要的角色,而其中的小目标检测一直是一个具有挑战性的问题。为了解决这一问题并提高检测性能,研究人员提出了许多改进的算法。本文将介绍一种新的改进版本,称为YOLOv5/v7/v8的改进版InceptionNeXt,它将Inception和ConvNeXt系列相结合,具有即插即用的特点。
InceptionNeXt是在YOLOv5/v7/v8基础上进行的改进,旨在解决小目标检测中的困难。它采用了Inception和ConvNeXt两个经典的网络结构,并将它们融合在一起。Inception网络以其多尺度的特征表示而闻名,而ConvNeXt网络则通过有效地利用分组卷积来提高特征表达能力。通过结合这两种网络结构,InceptionNeXt能够更好地捕捉不同尺度的目标特征,并提高小目标检测的准确性。
下面是InceptionNeXt的关键代码实现:
import torch
import torch.nn as nn
import torch.nn<