计算机视觉是人工智能领域中的重要分支,它致力于使计算机能够理解和解释图像和视频。图像分类是计算机视觉中的一个核心任务,它旨在将图像分为不同的类别。在本文中,我们将探讨如何使用深度学习模型实现图像分类,并提供相应的源代码。
首先,我们需要准备一个适用于图像分类的数据集。常用的图像分类数据集包括MNIST、CIFAR-10和ImageNet。这些数据集包含了大量的图像样本,每个样本都有对应的类别标签。
接下来,我们将使用深度学习模型来构建图像分类器。在深度学习中,卷积神经网络(Convolutional Neural Network,简称CNN)是一种常用的模型架构。它通过在图像上进行卷积运算和池化操作来提取图像的特征,并通过全连接层进行分类。
下面是一个使用Python和TensorFlow库构建的简单的图像分类器示例:
import tensorflow as tf
# 加载数据集
(train_images, train_labels