给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
示例:
给定的有序链表: [-10, -3, 0, 5, 9],
一个可能的答案是:[0, -3, 9, -10, null, 5], 它可以表示下面这个高度平衡二叉搜索树:
0
/ \
-3 9
/ /
-10 5
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/convert-sorted-list-to-binary-search-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
1.将链表的值放入到集合中,转化为将有序数组转化为二叉搜索树的问题
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
ArrayList<Integer> list = new ArrayList<>();
public TreeNode sortedListToBST(ListNode head) {
if(head==null){
return null;
}
ListNode cur = head;
while(cur!=null){
list.add(cur.val);
cur = cur.next;
}
return buildTree(0,list.size()-1);
}
public TreeNode buildTree(int start,int end){
if(start>end){
return null;
}
int mid = start+(end-start)/2;
TreeNode root = new TreeNode(list.get(mid));
root.left = buildTree(start,mid-1);
root.right = buildTree(mid+1,end);
return root;
}
}
2.遍历链表,找到中间结点,构建二叉搜索树
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode sortedListToBST(ListNode head) {
return buildTree(head,null);
}
public TreeNode buildTree(ListNode head,ListNode tail){
if(head==tail){
return null;
}
//利用快慢指针找出中间节点
ListNode fast = head,slow = head;
while(fast!=tail&&fast.next!=tail){
fast = fast.next.next;
slow = slow.next;
}
TreeNode root = new TreeNode(slow.val);
root.left = buildTree(head,slow);
root.right = buildTree(slow.next,tail);
return root;
}
}
3.m模拟中序遍历
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
ListNode cur = null;
public TreeNode sortedListToBST(ListNode head) {
cur = head;
int len = 0;
while(head!=null){
head = head.next;
len++;
}
return buildTree(0,len-1);
}
public TreeNode buildTree(int start,int end){
if(start>end){
return null;
}
int mid = start+(end-start)/2;
//建立左子树
TreeNode left = buildTree(start,mid-1);
//根结点
TreeNode root = new TreeNode(cur.val);
cur = cur.next;
root.left = left;
//右子树
root.right = buildTree(mid+1,end);
return root;
}
}
时间复杂度:时间复杂度仍然为 、O(N) 因为我们需要遍历链表中所有的顶点一次并构造相应的二叉搜索树节点。
空间复杂度:O(logN) ,额外空间只有一个递归栈,由于是一棵高度平衡的二叉搜索树,所以高度上界为 \log NlogN。