动态规划问题(2022蓝桥杯积木画题目)

本文通过动态规划方法解决积木摆放问题,详细介绍了如何利用二维数组dp记录不同长度画布下的积木摆放方案数量,并给出具体实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 超详细傻瓜级教学,包看包会。

 关键思想:将2*1的画布看成初始画布,后面不断加1列空白列构成其他画布。所以最后一个画布的积木构成可以由之前的画布积木构成来推导。

下面为初始画布(仅有放一个i型积木的可能)

 我们将画布上最后两格都空的情况称为情况0

 只空上格称为情况1

 

 只空下格称为情况2

 不空称为情况3(即满足题目条件的情况)

 所以定义一个二维数组dp[n+1][4](动态规划算法简称DP,这个数组名就这样来的)

用来存储n长度画布的4种情况的可能的构成次数(即情况0123 为索引,所存的数为可能出现的构成的次数)

int[][] dp=new int[n+1][4];
        dp[1][0]=1;
        dp[1][3]=1;//情况初始化,初始画布下仅在情况3和情况0

 

一格画布只能出现情况3或0,12无法出现,所以将n=1时进行赋值。

 再多一格时有这几种情况

 

 即012的情况各有一种可能,3有两种可能

再往后添加一格空白,则012各有两种可能,3有五种可能

 我们可以发现规律:

0情况就是上一个画布下3情况的可能(毕竟多加一列画布,前面是满的,后面多一列空白就满足了0情况)

1情况是上一个画布下0情况家+2情况的和 (即上一个画布的0情况加一个L型可满足,或上一个画布的2情况加一个横I型亦可满足)

 

 

 情况2与情况1基本一样不再赘述

情况3(=上一个画布的情况0+情况1+情况2+情况3(如下图))

 

 注意情况0的I型只能横放,否则与情况3重复。

则有如下代码

for(int i=2;i<=n;i++){
            //情况0的计算
            dp[i][0]=dp[i-1][3];
            //情况1和2的计算
            dp[i][1]=(dp[i-1][0]+dp[i-1][2])%mod;
            dp[i][2]=(dp[i-1][0]+dp[i-1][1])%mod;
            //情况3的计算
            dp[i][3]=(((dp[i-1][0]+dp[i-1][1])%mod+dp[i-1][2])%mod+dp[i-1][3])%mod;
        }
        System.out.print(dp[n][3]);

 情况3的计算之所以要取模多次是为了保证不爆容器,毕竟一个数不论取多少次模都等于取一次模,所以无需在意多次取模对数据造成的影响。

最后输出dp[n][3]即为答案。完整代码如下

 

import java.util.Scanner;
// 1:无需package
// 2: 类名必须Main, 不可修改

public class Main {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        //在此输入您的代码...
         int mod=1000000007;
        int n=scan.nextInt();
        int[][] dp=new int[n+1][4];
        dp[1][0]=1;
        dp[1][3]=1;//情况初始化,初始画布下仅在情况3
        for(int i=2;i<=n;i++){
            //情况0的计算
            dp[i][0]=dp[i-1][3];
            //情况1和2的计算
            dp[i][1]=(dp[i-1][0]+dp[i-1][2])%mod;
            dp[i][2]=(dp[i-1][0]+dp[i-1][1])%mod;
            //情况3的计算
            dp[i][3]=(((dp[i-1][0]+dp[i-1][1])%mod+dp[i-1][2])%mod+dp[i-1][3])%mod;
        }
        System.out.print(dp[n][3]);
        scan.close();
    }
}

 完!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值