深度优先遍历和广度优先遍历

深度优先遍历(depth first dearch 简称:DFS)和广度优先遍历(breath first dearch简称:BFS)是两种重要的算法。

深度优先遍历:

主要思路就是从一个未访问的结点出发,一路走到底,然后从这条路尽头的节点回退到上一个节点,再从另一条路开始走到底...,不断递归重复此过程,直到所有的顶点都遍历完成,它的特点是不撞南墙不回头,先走完一条路,再换一条路继续走。

我们以二叉树为例,实现一下深度遍历

(递归用法):

public class Solution{
   privait static class TreeNode{
     public int val;
     public TreeNode left;
     public TreeNode right;
     
     public TreeNode(){}
     public TreeNode(int val) { this.val = val}
     public TreeNode(int val,TreeNode left,TreeNode right){
        this.val = val ;
        this.left = left;
        this.right = right;
      }
  }
   
   public static void dfs(TreeNode Node){
       if(Node == null){
          return ;
       }

       process(Node);
       dfs(Node.left);
       dfs(Node.right);
   }

}

(非递归用法):

public static void dfsWithStack(Node root) { 
    if (root == null) { 
        return; 
    } 
 Queue<Node> stack = new LinkedList<>(); 
    stack.add(root); 
 
    while (!stack.isEmpty()) { 
        Node node = stack.poll(); 
        System.out.println("value = " + node.value); 
        Node left = node.left; 
        if (left != null) { 
            stack.add(left); 
        } 
        Node right = node.right; 
        if (right != null) { 
            stack.add(right); 
        } 
    } 
} 

广度优先遍历:

广度优先遍历,主要思路是从图的一个未遍历的节点出发,先遍历这个节点的相邻节点,再依次遍历每个相邻节点的相邻节点。

以二叉树为例:

private static void bfs(Node root) { 
    if (root == null) { 
        return; 
    } 
    Queue<Node> stack = new LinkedList<>(); 
    stack.add(root); 
 
    while (!stack.isEmpty()) { 
        Node node = stack.poll(); 
        System.out.println("value = " + node.value); 
        Node left = node.left; 
        if (left != null) { 
            stack.add(left); 
        } 
        Node right = node.right; 
        if (right != null) { 
            stack.add(right); 
        } 
    } 
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值