第五章 多元函数微分学

本文探讨了多元函数在某点的极限存在性条件,特别关注了当m和n为正整数,p和q为非负整数时,函数x^py^q/(x^m+y^n)的极限行为。总结了当m和n不全为偶数时,极限不存在的结论,以及当m和n全为偶数且pm+qn>1时,极限为0的情况。此外,还阐述了多元函数在某点的偏导数连续与可微性的关系,以及可微的充要条件,即方向导数的极限为0的必要条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. lim ⁡ ( x , y ) → ( 0 , 0 ) x p y q x m + y n \lim\limits_{(x,y) \to (0,0)}\frac{x^py^q}{x^m+y^n} (x,y)(0,0)limxm+ynxpyq m m m n n n为正整数, p p p q q q为非负整数)是否存在的结论:
    (1) m m m n n n不全为偶数时,极限一定不存在。
    (2) m m m n n n全为偶数时,若 p m + q n > 1 \frac{p}{m}+\frac{q}{n}>1 mp+nq>1,则 lim ⁡ ( x , y ) → ( 0 , 0 ) x p y q x m + y n = 0 \lim\limits_{(x,y) \to (0,0)}\frac{x^py^q}{x^m+y^n}=0 (x,y)(0,0)limxm+ynxpyq=0;若 p m + q n ≤ 1 \frac{p}{m}+\frac{q}{n}\leq 1 mp+nq1,则 lim ⁡ ( x , y ) → ( 0 , 0 ) x p y q x m + y n \lim\limits_{(x,y) \to (0,0)}\frac{x^py^q}{x^m+y^n} (x,y)(0,0)limxm+ynxpyq不存在(选择路径 y = k x m − p q y=kx^{\frac{m-p}{q}} y=kxqmp)。
  2. 多元函数在某一点的连续问题:研究多重极限(偏导数也是多元函数,研究偏导数在某一点连续同样要计算多重极限)
  3. 多元函数在某一点的偏导数存在问题:研究单变量极限
  4. 可微的充要条件: lim ⁡ ( Δ x , Δ y ) → ( 0 , 0 ) f ( x + Δ x , y + Δ y ) − f ( x , y ) − f x ′ ( x , y ) Δ x − f y ′ ( x , y ) Δ y ( Δ x ) 2 + ( Δ y ) 2 = 0 \lim\limits_{(Δx,Δy) \to (0,0)}\frac{f(x+Δx,y+Δy)-f(x,y)-f_x'(x,y)Δx-f_y'(x,y)Δy}{\sqrt{(Δx)^2+(Δy)^2}}=0 (Δx,Δy)(0,0)lim(Δx)2+(Δy)2 f(x+Δx,y+Δy)f(x,y)fx(x,y)Δxfy(x,y)Δy=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值