-
lim
(
x
,
y
)
→
(
0
,
0
)
x
p
y
q
x
m
+
y
n
\lim\limits_{(x,y) \to (0,0)}\frac{x^py^q}{x^m+y^n}
(x,y)→(0,0)limxm+ynxpyq(
m
m
m、
n
n
n为正整数,
p
p
p、
q
q
q为非负整数)是否存在的结论:
(1) m m m和 n n n不全为偶数时,极限一定不存在。
(2) m m m和 n n n全为偶数时,若 p m + q n > 1 \frac{p}{m}+\frac{q}{n}>1 mp+nq>1,则 lim ( x , y ) → ( 0 , 0 ) x p y q x m + y n = 0 \lim\limits_{(x,y) \to (0,0)}\frac{x^py^q}{x^m+y^n}=0 (x,y)→(0,0)limxm+ynxpyq=0;若 p m + q n ≤ 1 \frac{p}{m}+\frac{q}{n}\leq 1 mp+nq≤1,则 lim ( x , y ) → ( 0 , 0 ) x p y q x m + y n \lim\limits_{(x,y) \to (0,0)}\frac{x^py^q}{x^m+y^n} (x,y)→(0,0)limxm+ynxpyq不存在(选择路径 y = k x m − p q y=kx^{\frac{m-p}{q}} y=kxqm−p)。 - 多元函数在某一点的连续问题:研究多重极限(偏导数也是多元函数,研究偏导数在某一点连续同样要计算多重极限)
- 多元函数在某一点的偏导数存在问题:研究单变量极限
- 可微的充要条件: lim ( Δ x , Δ y ) → ( 0 , 0 ) f ( x + Δ x , y + Δ y ) − f ( x , y ) − f x ′ ( x , y ) Δ x − f y ′ ( x , y ) Δ y ( Δ x ) 2 + ( Δ y ) 2 = 0 \lim\limits_{(Δx,Δy) \to (0,0)}\frac{f(x+Δx,y+Δy)-f(x,y)-f_x'(x,y)Δx-f_y'(x,y)Δy}{\sqrt{(Δx)^2+(Δy)^2}}=0 (Δx,Δy)→(0,0)lim(Δx)2+(Δy)2f(x+Δx,y+Δy)−f(x,y)−fx′(x,y)Δx−fy′(x,y)Δy=0
第五章 多元函数微分学
于 2021-09-27 14:57:58 首次发布