2010
- 反常积分审敛法的比较法不够熟练,只知道找等价的反常积分却忘了找大于或小于关系
- 秩的不等式,第一想到用其它二级结论而不是常规公式求解
- 概率的规范性求解参数,题目中有常数时没有第一时间利用概率和为1求解而是答案带着常数
- 忘记使用常用不等式: l n ( 1 + x ) ≤ x ln(1+x) \leq x ln(1+x)≤x比较大小而陷入困境
- 求极限的夹逼准则法,第一时间想到了用冷门的二级结论而没想到常用的方法
- 二次型的标准型对应关系没有第一时间判断出来
- 二重积分中换元不够坚决,对于换原后积分结果似乎跟原变量无关感到犹豫
2011
- 若 ∣ A ∣ = 0 |A|=0 ∣A∣=0,则 A ∗ A = 0 A^*A=0 A∗A=0,A的列均为 A ∗ x = 0 A^*x=0 A∗x=0的解(我之前明明都知道的,模拟考试时就是没想出来,虽然这题答案可以用排除法)
- 把空间曲线化为参数方程往往更加容易求解曲线积分
- 对于投影到一个平面上的积分区域非常方便计算的第二类曲面积分,可以化成第一类曲面积分(出题人绝对不会为难你,难算一定是你没找到好的计算方法)
- d y d z = d S cos α , d z d x = d S cos β , d x d y = d S cos γ dydz = dS\cos{α},dzdx=dS\cos{β},dxdy=dS\cos{γ} dydz=dScosα,dzdx=dScosβ,dxdy=dScosγ,使用斯托克斯公式时可以直接化成第一型曲面积分
- 使用幂指恒等式求极限时,需要注意里面的数拆出来后的正负。
- 忘了使用二重积分的交换积分次序(不要把被积函数函数和某个单次积分绑死!!!一定要记住积分的含义,不要过分着眼于一点而忽视了全局)
- 曲面曲线积分公式运用不够熟练
2019
- 单调递增的有界数列可以举例子: − 1 n -\frac{1}{n} −n1
- 三重积分中需要用到某些线性变换使得积分区域好积,需要考虑雅可比行列式
- 过渡矩阵的概念不熟
- 证明两个随机变量独立很难,但证明他们不独立很容易,只需要找一个联合概率不等于边缘概率乘积的反例即可