题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)
代码如下:
/*
maxSum:表示从a[0]至a[n]的连续子数组和最大值(不一定包括a[n])
sum :表示从a[0]至a[n]的连续子数组和最大值(一定包括a[n])
maxSum[n] = max(a[n],max(maxSum[n-1],sum[n-1]+a[n]))
主要是sum[n]比较难求!
sum[n] = max(sum[n-1]+a[n],a[n])
*/
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
vector<int>::iterator it = array.begin();
priority_queue<int> pq;
int i = 0;
int maxSum, sum;
maxSum = sum = (*it++);
pq.push(maxSum);
for (; it != array.end(); ++it){
sum = max(sum + (*it), (*it));
maxSum = max((*it), max(maxSum, sum));
pq.push(maxSum);
}
return pq.top();//优先队列保存每次的最大值,最后弹出所有最值中的最大值
}
};