连续子数组的最大和

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)

代码如下:

/*
maxSum:表示从a[0]至a[n]的连续子数组和最大值(不一定包括a[n])
sum       :表示从a[0]至a[n]的连续子数组和最大值(一定包括a[n])
maxSum[n] = max(a[n],max(maxSum[n-1],sum[n-1]+a[n]))
主要是sum[n]比较难求!
sum[n] = max(sum[n-1]+a[n],a[n])
*/
class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> array) {
        vector<int>::iterator it = array.begin();
        priority_queue<int> pq;
        int i = 0;
        int maxSum, sum;
        maxSum = sum = (*it++);
        pq.push(maxSum);
        for (; it != array.end(); ++it){
            sum = max(sum + (*it), (*it));
            maxSum = max((*it), max(maxSum, sum));
            pq.push(maxSum);
        }
        return pq.top();//优先队列保存每次的最大值,最后弹出所有最值中的最大值
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值