贪心算法--集合覆盖问题(Java)

贪心算法–集合覆盖问题(Java)

学习视频:尚硅谷韩老师java讲解数据结构和算法

一、贪心算法介绍

1.贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而 希望能够导致结果是最好或者最优的算法
2.贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果

二、贪心算法最佳应用-集合覆盖
2.1、题目描述

假设存在如下表的需要付费的广播台,以及广播台信号可以覆盖的地区。 如何选择最少的广播台,让所有 的地区都可以接收到信号
在这里插入图片描述

2.2、思路分析:

如何找出覆盖所有地区的广播台的集合呢,使用穷举法实现,列出每个可能的广播台的集合,这被称为幂集。假 设总的有 n 个广播台,则广播台的组合总共有 2ⁿ -1 个,假设每秒可以计算 10 个子集, 如图:
在这里插入图片描述

2.3、解决方法:

使用贪婪算法,效率高:

  1. 目前并没有算法可以快速计算得到准备的值, 使用贪婪算法,则可以得到非常接近的解,并且效率高。选择策略上,因为需要覆盖全部地区的最小集合。
  2. 遍历所有的广播电台, 找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)
  3. 将这个电台加入到一个集合中(比如 ArrayList), 想办法把该电台覆盖的地区在下次比较时去掉。
  4. 重复第 1 步直到覆盖了全部的地区
    分析的图解:
    在这里插入图片描述
2.4、代码实现:
package com.lxf.greedy;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;

public class ListCover {
    public static void main(String[] args) {
        //创建广播电台,放入到Map
        HashMap<String, HashSet<String>> broadCasts = new HashMap<>();
        //将各个电台放入到broadCasts
        broadCasts.put("k1", new HashSet<>(Arrays.asList("北京","上海","天津")));
        broadCasts.put("k2", new HashSet<>(Arrays.asList("广州","北京","深圳")));
        broadCasts.put("k3", new HashSet<>(Arrays.asList("成都","上海","杭州")));
        broadCasts.put("k4", new HashSet<>(Arrays.asList("上海","天津")));
        broadCasts.put("k5", new HashSet<>(Arrays.asList("杭州","大连")));

        //allAreas 存放所有的地区
        HashSet<String> allAreas = new HashSet<>();
        for (HashSet<String> broadCast : broadCasts.values()) {
            allAreas.addAll(broadCast);
        }

        //创建一个ArrayList,存放选择的电台集合
        ArrayList<String> selects = new ArrayList<>();

        //定义一个临时的集合,在遍历的过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集
        HashSet<String> tempSet = new HashSet<>();

        //定义给maxKey,保存在一次遍历过程中,能够覆盖最大未覆盖的地区对应的电台的key
        //如果maxKey不为null,则会加入到selects
        String maxKey=null;
        while(allAreas.size()!=0){//如果allAreas不为0,则表示还没有覆盖到所有的地区
            //每进行一次while,需要
            maxKey=null;

            //遍历broadcasts,取出对应的key
            for (String key : broadCasts.keySet()) {
                //每进行一次for
                tempSet.clear();
                //当前这个key能够覆盖的地区
                HashSet<String> areas = broadCasts.get(key);
                tempSet.addAll(areas);
                //求出tempSet和allAreas集合的交集,交集会赋给tempSet
                //tempSet.size()>broadCasts.get(maxKey).size() 体现出贪心算法的特点,每次都选择最优的
                tempSet.retainAll(allAreas);
                if(tempSet.size()>0&&(maxKey==null||tempSet.size()>broadCasts.get(maxKey).size())){
                    maxKey=key;
                }
            }
            //maxKey!=null,就应该将maxKey加入selects
            if(maxKey!=null){
                selects.add(maxKey);
                //将maxKey指向的广播电视台覆盖的地区,从allAreas去掉
                allAreas.removeAll(broadCasts.get(maxKey));
                //broadCasts.remove(maxKey);
            }
        }

        System.out.println("得到的选择结果是"+selects);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值