前言:
最近博主在做毕设,需要用到TensorFlow深度学习框架,之前有在Anaconda环境下安装过TensorFlow的CPU版本,详情见下方Anaconda||(踩坑无数,含泪总结!!!)Anaconda的卸载与安装(tensorflow+Keras+spyder+添加镜像源)_Inochigohan的博客-CSDN博客目录一、Anaconda简介二、Anaconda的卸载2.1 普通卸载2.2 彻底卸载一、Anaconda简介Anaconda指的是一个开源的Python发行版本,可以便捷获取包且对包能够进行管理,同时对环境可以统一管理,其包含了conda、Python、numpy、scipy、ipython notebook等180多个科学包及其依赖项。Anaconda利用工具/命令conda来进行安装包和环境的管理,并且已经包含了Python和相关的配套工具。...
https://blog.csdn.net/Inochigohan/article/details/120400990 TensorFlow的CPU版本安装相对容易,但在训练大型神经网络或者大规模数据时,CPU版本的速度可能会很慢(谁试过谁知道(T_T),所以还是推荐安装TensorFlow的GPU版本的,这种情况下还需要安装CUDA和cuDNN,有亿丢丢复杂hhh
目录
一、检查电脑是否支持GPU
1.1 查看电脑相关配置
打开电脑的“控制面板”,找到NVIDIA控制面板,查看“系统信息”。博主的电脑配置是Windows10 64位操作系统的,有块GeForce MX130显卡,因此可以考虑安装TensorFlow的GPU版本。
补充知识点:如何查看笔记本电脑里的显卡
1.2 检查是否支持安装
也许有小兄弟的电脑显卡型号和博主不太一样,不知道自己的显卡支不支持安装TensorFlow的GPU版本,可以去英伟达官网 看看 。
博主的显卡型号是GeForce MX130,在下图“支持CUDA的GeForce和TITAN产品”栏目列表中其实是找不到的,但网上有教程说英伟达的那个列表其实已经很久没有更新了,因此仅供参考。本文亲身试验使用GeForce MX130安装TensorFlow的