TensorFlow||Win10下TensorFlow-GPU版的安装(MX130+CUDA 10.0+cuDNN 7.4.2+Python3.6+TensorFlow-GPU2.0.0)

前言:

        最近博主在做毕设,需要用到TensorFlow深度学习框架,之前有在Anaconda环境下安装过TensorFlow的CPU版本,详情见下方Anaconda||(踩坑无数,含泪总结!!!)Anaconda的卸载与安装(tensorflow+Keras+spyder+添加镜像源)_Inochigohan的博客-CSDN博客目录一、Anaconda简介二、Anaconda的卸载2.1 普通卸载2.2 彻底卸载一、Anaconda简介Anaconda指的是一个开源的Python发行版本,可以便捷获取包且对包能够进行管理,同时对环境可以统一管理,其包含了conda、Python、numpy、scipy、ipython notebook等180多个科学包及其依赖项。Anaconda利用工具/命令conda来进行安装包和环境的管理,并且已经包含了Python和相关的配套工具。...https://blog.csdn.net/Inochigohan/article/details/120400990        TensorFlow的CPU版本安装相对容易,但在训练大型神经网络或者大规模数据时,CPU版本的速度可能会很慢(谁试过谁知道(T_T),所以还是推荐安装TensorFlow的GPU版本的,这种情况下还需要安装CUDA和cuDNN,有亿丢丢复杂hhh

目录

一、检查电脑是否支持GPU 

1.1 查看电脑相关配置

​1.2 检查是否支持安装

1.3 注意版本对接

二、安装CUDA

2.1下载和安装

2.2 配置环境变量

2.3 检验软件是否安装成功

三、安装cuDNN

3.1下载和安装

3.2 解压文件并放到相应位置

四、安装TensorFlow-GPU 

4.1创建环境与安装

4.2验证安装成功


一、检查电脑是否支持GPU 

1.1 查看电脑相关配置

        打开电脑的“控制面板”,找到NVIDIA控制面板,查看“系统信息”。博主的电脑配置是Windows10 64位操作系统的,有块GeForce MX130显卡,因此可以考虑安装TensorFlow的GPU版本。

         补充知识点:如何查看笔记本电脑里的显卡

1.2 检查是否支持安装

        也许有小兄弟的电脑显卡型号和博主不太一样,不知道自己的显卡支不支持安装TensorFlow的GPU版本,可以去英伟达官网 看看 。

        博主的显卡型号是GeForce MX130,在下图“支持CUDA的GeForce和TITAN产品”栏目列表中其实是找不到的,但网上有教程说英伟达的那个列表其实已经很久没有更新了,因此仅供参考。本文亲身试验使用GeForce MX130安装TensorFlow的

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值