文章目录
论文信息
- 题目:基于半监督学习的运动想象脑机接口研究
- 作者:谭学敏
- 单位:重庆大学电气工程
- 发表时间:2015.05
笔记
1.摘要
- 基于参数选择的自训练算法(STBMS),解决了运动想象 BCI 自训练中小样本无法利用交叉验证准确选择合适参数的问题。针对迭代过程噪声不断积累的问题,提出了一种置信度评估准则,去除未标记样本中易误标记的噪声样本,选择置信度高的样本添加到训练集中重新训练,提高了自训练的分类性能和信噪比
- 基于衍生FLDA(Fisher Linear Discriminant Analysis)的协同训练算法(CTBMFLDA),运用到运动想象的分类中。
- 用于运动想象 BCI 多分类的三种主动学习方法(ALNACD,ALSVMactive 和 ALEBS),探索了这三种主动学习的样例选择策略:最近平均聚类距离(Nearest Average-class Distance,NACD),SVM 主动学习(SVMactive)和信息熵(Entropy-based Sampling,EBS)
- 提出了一个新的特征提取方法:分段选择共空间模式(Segmented Common Spatial Pattern,SCSP)。利用 SCSP 作为特征提取方法,提出了基于 SCSP 的batch-mode 增量式顺序更新半监督算法(BMSUST-SCSP),不仅节省了训练时间,而且为在线 BCI 的开发和应用提供了模型和框架。
2.绪论
2.1 BCI研究基础
2.1.1BCI概念与研究意义
脑机接口 :在不依赖脑的正常输出通路(外围神经与肌肉组织)的情况下,建立起人脑与计算机或其他电子设备之间的直接通讯和控制。
BCI技术的理论意义在于:它的研究与开发过程不仅能够深入理解大脑认知模式、控制方式与信息流程,而且也能对大脑思维模式与意识的形成机制提供新的研究方法。
BCI技术主要应用于以下几个方面:
- 医疗领域
- 军事领域
- 娱乐与日常
- 可穿戴智能装备
2.1.2BCI系统组成与分类
1.信号采集
大部分都是在用EEG
2.信号预处理
信号预处理主要是对信号进行滤波和去噪,一个有效的预处理可以增强信噪比和提高 BCI 系统的性能。通常使用的预处理方法包括空间滤波、频率滤波、独立成份分析去除眼电、基线校正等。
3.信号处理
原始脑信号经过预处理以后,需要经过特征提取和信号分类将信号转换成对设备的控制命令。在 BCI 系统中,特征提取实际上也是为了提高信噪比,把需要的有用特征从噪声中突现出来,这些有用的特征是真正能够反应大脑真实意图的。提取到反应大脑意识的特征后,信号分类的主要任务是将这些特征进行分类识别。目前,用于 BCI 分类的方法很多,如线性判别分析、支持向量机、人工神经网络等。
4.输出控制
5.操作协议
根据以下三种不同的分类方式,BCI 系统可分为以下几类:
- 植入式BCI和非植入式BCI
- 自发式和诱发式
- 同步式和异步式
2.1.3存在问题
- 提高速度与精度
- 提高自适应性
- 减少训练时间与增强鲁棒性
2.2 半监督学习研究背景
2.2.1模式识别
模式识别是对感知信号的行为或物理现象进行解释和判别的过程,侧重于自动化和判读方面的研究。
模式识别过程主要包括数据的预处理、特征提取与选择、分类识别。
2.2.2半监督学习
在训练过程中,它除了使用少量的有标记样本,还利用了大量未标记样本的隐含信息。
半监督学习的基本思想是在有标记样本的帮助下建立假设模型,并使用模型预测未标记样本标签。
半监督学习基本假设
- 聚类假设
如果数据点在同一聚类中,它们很有可能具有相同的类别标记.这意味着决策边界应该位于数据较为稀疏的区域。
- 流形假设
不同于着重考虑整体特性的聚类假设,流形假
设着眼于局部特性,实际反映了决策函数的局部平滑性。在大量未标记样本的参与下,整个数据空间变得十分稠密,这有助于更加准确地刻画局部区域特性,增加了决策函数的局部平滑性
- 局部与全局一致性假设
邻近的数据很有可能属于同一类别,相同结构上的数据很有可能有相同的标签
2.2.3半监督学习分类研究现状
- 生成式模型算法
此算法利用聚类假设,在少量有标记样本周围聚类。算法使用生成式模式作为分类器