最小化渲染组件

18 篇文章 0 订阅
5 篇文章 0 订阅

这篇文章我们主要聚焦在组件的渲染方法上,在上篇文章中,我们采用了innerHTML渲染组件,但是频繁更新组件的话,由于reflow,repaint等原因,页面的性能会下降,同时输入框的焦点也会丢失。最理想的方式就是哪些数据变化,我们更新哪块view,并且从外表上看还是整个区域全部更新。目前解决这个问题的方式有Virtual DomMVVM.

  • Virtual Dom
  • MVVM
  • VirtualView

Virtual Dom

以react为代表的框架采用了virtual dom的方法来进行页面的渲染工作。

我们以react为例http://jsfiddle.net/slalx/69z2wepo/4602/,来看看使用virtual dom是怎么工作的。

var PeopleList = React.createClass({
  getInitialState: function() {
    return {data:[
                {'name': '张三',
                 'level': '开发工程师.'},
                {'name': '李四',
                 'level': '高级开发工程师.'},
                {'name': '王五',
                 'level': '资深开发工程师.'}
           ]
           };
  },

  handleClick: function(){

      var data = this.state.data;
      data.push({'name':1,'level':4});
      this.setState(data);
  },

  render: function() {  
    var listItems = this.state.data.map(function(item) {
        return <li>{item.name}{item.level}</li>;
    });

    return <ul><li><button onClick={this.handleClick}>添加</button></li>{listItems}</ul>
    ;

  }
});

React.render(<PeopleList />, document.getElementById('container'));

数据模型的变化会调用setState方法,来触发render方法,在render方法中会采用virtrual dom的方法进行渲染。

virtual dom的基本思想是就是在每次状态更新的时候,生成一个新的json形式的vtree,通过和上次生成的vtree对比,找到变化的部分,然后patch到真正的dom树中,整个过程都是在内存中完成的,只有一次dom操作,并且只更新变化的部分;这样既可以跟踪页面中dom的状态,也可以使页面的渲染逻辑更加清晰明了。

virtual dom中涉及的最关键的一个部分就是新的vtree和上次的vtree对比时所用的diff算法,一般传统的比较两个树结构之间的最小的修改至少也得是O(n^3)复杂度,但是这里用到一个简单且强大的技巧,达到了O(n)的复杂度。下面来看下diff内部到底是如何进行的?

  1. 简单对象

    假如说我们有一个JavaScript对象

var object = {
    a: {x: 1, y: 2},
    b: {text: 'helloWorld'}
}
经过某种操作,我们修改了object.a.y=3,现在最新的javascript对象变成

var object2 = {
    a: {x: object.a.x, y: 3},
    b: object.b
}


这里我们重用了object.a.x和object.b,减少了copy的问题。同时如果我们对比两个对象的差异性,在我们比较object.b和object2.b之前,如果他们是同一个对象,仅仅需要需要检查他们的引用是否相等。

2、复杂对象

假如我们有一个复杂的对象,其中一个键值发生了变化,如果还采用上面你的方式就会比较难处理。

var prev = {
    '0-3': {
        '0-1': {0: 'a', 1: 'b'},
        '2-3': {...},
    },
    '4-7': {...}
}

经过某种操作变成了下面这样

var next = {
    '0-3': {
        '0-1': prev['0-3']['0-1'],
        '2-3': {
            2: 'hey',
            3: prev['0-3']['2-3'][3]
        }
    },
    '4-7': prev['4-7']
}

  1. 这样的话,比较起来算法复杂度就会下降很多。

要完成上面的操作如果处处都需要我们从零开始写,会费时费力,已经有类似immutablemori来帮我们完成上面你的工作。

MVVM

目前主流的mvvm框架[angular,ember]都使用了一种叫做脏检查的算法[chrome36,opera23版本后支持了Object.observe()做同样功能],来完成数据的差异性对比,找到变化的数据,然后根据模型与视图的对应关系更新视图和模型。

依angular为例,来看看现在的mvvm框架是怎么工作的。假如有个人员列表应用的例子,我们要把「peoples」数组(在JS中定义的)中的每个「people」的值绑定到一个列表项上,这样我们的数据和用户界面总能保持同步:

<html ng-app>
  <head>
    <script src="angular.js"></script>
    <script src="controller.js"></script>
  </head>
  <body ng-controller="PeopleListCtrl">
    <ul>
      <li ng-repeat="people in peoples">
        {{people.name}}
        <p>{{people.level}}</p>
      </li>
    </ul>
  </body>
</html>

下面是控制器的js代码

var peopleApp = angular.module('peopleApp', []);

peopleApp.controller('PeopleListCtrl', function($scope) {
  $scope.peoples = [
    {'name': '张三',
     'level': '开发工程师.'},
    {'name': '李四',
     'level': '高级开发工程师.'},
    {'name': '王五',
     'level': '资深开发工程师.'}
  ];
});

一旦底层的模型数据发生变化,由于数据与视图的双向绑定http://stackoverflow.com/questions/9682092/databinding-in-angularjs,我们DOM中的列表就会相应更新。Angular是怎么做到的?它在底层进行着「脏检查」的工作。

算法如下,在这里可以查看具体的实现

1、简单对象
var record = {
  obj,       // The object whose field needs to be checked.
  field,     // The field name to dereference.
  lastValue, // The last value of the field.
  next,      // Next record in the chain of records to check.
};

var current = head;
while(current !== null) {
  if (current.obj[current.field] !== current.lastValue) {
    // record change
  }
  current = current.next;
}

可以参考这里的性能对对 http://jsperf.com/object-observe-polyfill-sandbox

2、array和map

var maybeDirty = false;
for(int index = 0, length = list.length; index < length; index++) {
  var item = list[index];
  if (record === null || item !== record.item) {
    record = changeLog.mismatch(record, item, index);
    maybeDirty = true;
  } else if (maybeDirty) {
    record = changeLog.verifyReinsertion(record, item, index);
  }
  record = record._nextRec;
}
changeLog.truncate(record);
可以参考这里的性能对比 http://jsperf.com/array-change-detection

3、function 和closure

fn(a.b, c)
当a,b,c变化时,需要调用fn
脏检查的基本思想是

  1. 一旦数据可能发生改变,库就要通过摘要循环或变化循环去检查是否发生了变化。
  2. 在Angular中,一次摘要循环会检查所有需要监听的表达式,看是否发生了变化。
  3. 它知道模型的前一个值是什么,当变化发生时,会触发一个「change」事件。
  4. 对开发者来说,最大的好处莫过于你可以使用原生的JavaScript对象(用起来写起来都很爽)。
  5. 而缺点就是它的算法比较糟糕,并且可能有很大的开销。该操作的开销与被监视的对象的数量是成正比的。

综上两种最小化渲染组件的方式,区别主要在下面两点

  1. 何时触发更新,数据模型与视图的绑定

    react是每次在setState的时候触发更新,如果没有setState的调用是不会触发,采用的是数据与试图的单项绑定;而anguar采用的是数据的双向绑定, 页面中需要时刻监控着数据对象的变化,并且操作的开销与被监视的对象的数量是成正比的,随着监控的对象的数量增加,计算压力和内存压力都会增加,性能就会出现问题。

  2. 如何更新,diff的计算

    react对用采用immutable数据结构的形式来进行数据的diff,其实在进行diff之前已经知道数据的变化了,只是找到变化的部分;angular通过脏检查的方式来进行数据差异的查找,垃圾回收的压力和计算的压力确实会比较大。

孰优孰劣很难说,只能说他们分别有自己的应用场景,我们只要用对场景就没有对错。对性能要求苛刻的场景,react更适合一些,性能对比http://evancz.github.io/todomvc-perf-comparison/,并且react只关注与视图层,需要在js代码中。对数据的实时更新,需要双向绑定的场景,同时如果你想让框架帮你做所有的事,angular更适合一些


转自:http://blog.csdn.net/slalx/article/details/44596429

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值