题意:
输入一个长度为n的序列a,要求确定每个数的正负号,使得所有数的总和为0,例如 a ={1, 2, 3, 4} 则设4个数的符号分别是 1, -1, -1, 1 即可。但如果 a ={1, 2, 3, 3} 则无解。
分析:
从大到小,因为可以确认的是,只有可能小的堆起来干一个大的才可能为0 ,总之这个算法。就是感觉是这样的啊。
尽量中和,但是不能从小到大中和,这样最大的咋中和?
证明留给读者。。哈哈
代码:
#include<bits/stdc++.h>
#define LL long long
#define ms(s) memset(s, 0, sizeof(s))
using namespace std;
const int maxn = 1e5 + 10;
struct Node {
int id, v;
bool sym;
}node[maxn];
bool cmp1(const Node& n1, const Node& n2) {
return n1.v > n2.v;
}
bool cmp2(const Node& n1, const Node& n2) {
return n1.id < n2.id;
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
ios::sync_with_stdio(false);
cin.tie(0);
int n;
while(cin >> n) {
for(int i = 0; i < n; i++) {
cin >> node[i].v;
node[i].id = i;
}
sort(node, node + n, cmp1);
int tot = 0;
for(int i = 0; i < n; i++) {
if(tot <= 0) {
tot += node[i].v;
node[i].sym = 0;
} else {
tot -= node[i].v;
node[i].sym = 1;
}
}
if(tot == 0) {
sort(node, node + n, cmp2);
cout << "Yes" << endl;
for(int i = 0; i < n; i++) {
if(i) cout << " ";
cout << (node[i].sym == 0 ? 1 : -1);
}
cout << endl;
} else {
cout << "No" << endl;
}
}
return 0;
}